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Abstract—Many important eye diseases as well as systemic
diseases manifest themselves in the retina. While a number of
other anatomical structures contribute to the process of vision, this
review focuses on retinal imaging and image analysis. Following
a brief overview of the most prevalent causes of blindness in the
industrialized world that includes age-related macular degener-
ation, diabetic retinopathy, and glaucoma, the review is devoted
to retinal imaging and image analysis methods and their clinical
implications. Methods for 2-D fundus imaging and techniques for
3-D optical coherence tomography (OCT) imaging are reviewed.
Special attention is given to quantitative techniques for analysis of
fundus photographs with a focus on clinically relevant assessment
of retinal vasculature, identification of retinal lesions, assessment
of optic nerve head (ONH) shape, building retinal atlases, and to
automated methods for population screening for retinal diseases.
A separate section is devoted to 3-D analysis of OCT images, de-
scribing methods for segmentation and analysis of retinal layers,
retinal vasculature, and 2-D/3-D detection of symptomatic exu-
date-associated derangements, as well as to OCT-based analysis
of ONH morphology and shape. Throughout the paper, aspects
of image acquisition, image analysis, and clinical relevance are
treated together considering their mutually interlinked relation-
ships.

Index Terms—Computer-aided diagnosis, fundus photography,
optical coherence tomography (OCT), population screening,
retina.

I. INTRODUCTION

T HE retina is a layered tissue lining the interior of the eye
that enables the conversion of incoming light into a neural

signal that is suitable for further processing in the visual cortex
of the brain. It is thus an extension of the brain. The ability to
image the retina and develop techniques for analyzing the im-
ages is of great interest. As its function requires the retina to see
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Fig. 1. First known image of human retina as drawn by Van Trigt in 1853 [1].

the outside world, the involved ocular structures have to be op-
tically transparent for image formation. Thus, with proper tech-
niques, the retina is visible from the outside, making the retinal
tissue, and thereby brain tissue, accessible for imaging noninva-
sively (Fig. 1). Because the retina’s function makes it a highly
metabolically active tissue with a double blood supply, the retina
allows direct noninvasive observation of the circulation.

Thus, because of its architecture—dictated by its function—
both diseases of the eye, as well as diseases that affect the circu-
lation and the brain can manifest themselves in the retina. These
include ocular diseases, such as macular degeneration and glau-
coma, the first and third most important causes of blindness in
the developed world. A number of systemic diseases also affect
the retina. Complications of such systemic diseases include dia-
betic retinopathy from diabetes, the second most common cause
of blindness in the developed world, hypertensive retinopathy
from cardiovascular disease, and multiple sclerosis. Thus, on the
one hand, the retina is vulnerable to organ-specific and systemic
diseases, while on the other hand, imaging the retina allows dis-
eases of the eye proper, as well as complications of diabetes,
hypertension and other cardiovascular diseases, to be detected,
diagnosed and managed.

This review focuses on quantitative approaches to retinal
image analysis. Principles of 2-D and 3-D retinal imaging are
outlined first. Special emphasis is given to fundus and optical
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Fig. 2. Illustration of eye anatomy and retinal layers [2], [3]. (a) Cross-sec-
tional view of eye and its major structures. Retina is a thin transparent tissue
that lines the back of the eye and is comprised of a number of layers, as illus-
trated in enlarged portion. (b) Schematic drawing of cellular layers of retina. (a)
Two-dimensional illustration of eye anatomy. (b) Schematic of retinal layers.
Illustrations from Kolb [3] used with kind permission of Sigma Xi, The Scien-
tific Research Society, Research Triangle Park, NC.

coherence tomography (OCT) image analysis and its use to
provide comprehensive descriptions of retinal morphology and
function. The described methods cover the developments of the
past decade and were selected with respect to their potential
for screening-motivated computer-aided detection of retinal
abnormalities as well as for translational clinical applications
including improved retinal disease diagnoses and image-guided
retinal therapy. As such, the methods presented are expected to
influence routine clinical patient care in the years to come.

A. Eye Anatomy

This review focuses on the retina, nevertheless, a brief review
of gross eye anatomy is in place (Fig. 2). The visible parts of the
eye include the transparent cornea, the normally white sclera,
the colored (blue, green, brown or a mixture of these) iris, and an
opening in the iris, the normally black pupil. A ray of light, after
passing through the cornea, which partially focuses the image,
passes through the anterior chamber, the pupil, the lens, which
focuses the image further, the vitreous and is then focused on the
retina. The retina itself is supported by its retinal pigment ep-
ithelium, which is normally opaque, the choroid and the sclera.

The blood supply of the retina is primarily ( 65%) through the
choroid and secondarily ( 35%) through the retinal vasculature
which lies on top of the retina. It is useful to divide the retina
and choroid into the following layers:

1) internal limiting membrane;
2) nerve fiber layer (the axons of the ganglion cells, that

transmit the visual signal to the lateral geniculate nucleus
and thence the visual cortex);

3) ganglion cell layer (the cell bodies of the ganglion cells);
4) inner plexiform layer (the axons of the bipolar cells);
5) inner nuclear layer (the cell bodies of the bipolar and hor-

izontal cells);
6) outer plexiform layer (the dendrites of the horizontal cells

and the inner segments of the rod and cone photoreceptor
cells);

7) outer nuclear layer (cell bodies—outer segments—of the
photoreceptor cells);

8) external limiting membrane;
9) pigment epithelium;

10) Bruch’s membrane;
11) capillary choroid (capillaries of the choroid);
12) choroid plexus.
Most of the retinal layers can be seen on optical coherence to-
mography (OCT) images (Section V). However, imaging of the
capillary choroid and choroid plexus, though available in a re-
search setting, cannot yet be done with commercially available
devices.

B. Retinal Manifestations of Eye and Systemic Disease

Many important diseases manifest themselves in the retina
and originate either in the eye, the brain, or the cardiovascular
system. A brief overview of the most prevalent diseases that can
be studied via eye imaging and image analysis follows.

1) Diabetes: Diabetes mellitus, according to the current defi-
nition from the World Health Organization [4], is typically diag-
nosed if a patient has a fasting plasma glucose over 7.0 mmol/l.
Its causes are not fully understood, but genetic background, obe-
sity, and sedentary lifestyle all confer increased risk of devel-
oping diabetes. Treatment is primarily through diet changes, ad-
ministration of insulin and/or anti-hyperglycemic drugs. Hyper-
glycemia, the presence of elevated blood glucose, is known to
damage small and large blood vessels, as well as nerve cells, and
thereby damages the kidneys, heart, brain and eyes, and results
in a retinal complication of diabetes called diabetic retinopathy.

2) Diabetic Retinopathy: Diabetic retinopathy (DR) is a
complication of diabetes mellitus and the second most common
cause of blindness and visual loss in the U.S., and the most
important cause in the working age population. The number of
patients with diabetes in the U.S. is increasing rapidly and in
2007 reached 23.5 million [5]–[7]. There is abundant evidence
that blindness and visual loss in these patients can be prevented
through annual screening and early diagnosis [8]. In the eye,
hyperglycemia damages the retinal vessel walls, which can lead
to:

1) ischemia, resulting in the growth of new blood vessels,
which may subsequently bleed and/or cause retinal detach-
ment, a condition called proliferative diabetic retinopathy;
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2) breakdown of the blood-retinal barrier, leading to fluid
leakage, diabetic macular edema (DME) and damage to
photoreceptors.

The primary cause of visual loss in people with diabetes is DME,
which is more common in type 2 diabetes. The breakdown of
the blood-retinal barrier causes leakage of dilated hyperperme-
able capillaries and microaneurysms into intracellular and ex-
tracellular retinal tissue with subsequent fluid accumulation [9],
[10]. Clinically significant macular edema (CSME) occurs if
there is thickening of the retina involving the center of the retina
(macula) or the area within 500 m of the center, if there are
hard exudates at or within 500 m of the center with thickening
of adjacent retina, or if there is a zone of retinal thickening one
optic disc area or larger in size, any part of which is within one
disc diameter of the center of the retina [9]. This definition of
CSME generally refers to the threshold level at which laser pho-
tocoagulation treatment is considered. While visual loss occurs
when macular edema involves the visual center, lesser degrees
of DME may cause visual deterioration.

It is clear that DME affects macular structure in both the short
and long term. The leaking exudate in DME initially enters the
cytoplasm of Müller’s cells (radial glial cells of the retina), pref-
erentially in the outer retina, though fluid accumulation has been
found to extend through most macular layers in more advanced
stages of DME [11]. Cysts (retinal extracellular fluid) occur pre-
dominantly in the outer retina. Over time, cysts tend to fuse and
extend from the outer into the inner retina. In these cases, at-
rophy or apoptosis of the remaining retinal tissue occurs [11],
[12]. Serous detachment may occur in 20% of DME cases
and does not seem to correlate with visual acuity. Hard exu-
dates can occur and tend to be located at the level of the outer
plexiform layer. Patients with longstanding DME with impaired
visual acuity show decreased directional sensitivity of photore-
ceptors and decreased visual pigment density [13].

The management of diabetes primarily involves lowering of
blood sugar, through diet, lifestyle changes and anti-diabetic
drugs. If DR is present, management of CSME and proliferative
DR through laser photocoagulation, administration of anti-vas-
cular growth factors, and of steroids have been shown in large
randomized clinical trials to prevent blindness and further visual
loss [9], [14]–[16].

3) Age-Related Macular Degeneration: Age-related macular
degeneration (AMD) is the most common cause of visual loss in
the U.S. and is a growing public health problem. Currently, al-
most 7.3 million Americans (6.12% of Americans aged 40 years
and older) have some form of AMD, and AMD is the cause of
blindness for 54% of all legally blind Americans [17]. Severe
AMD reduces the likelihood of employment by 61% and salary
by 39%, while mild AMD reduces these by 44% and 32%, re-
spectively. The estimated annual cost burden from AMD in the
U.S. has been estimated as $30 billion [18]. The prevalence of
AMD is expected to double over the next 25 years [5]. The two
major forms are dry and wet AMD, of which dry AMD typically
leads to gradual loss of visual acuity. Wet AMD, also called
choroidal neovascularization (CNV), is the most visually threat-
ening form, characterized by ingrowth of a choroidal vascular
structure into the macula accompanied by increased vascular
permeability. The increase in vascular permeability leads to ab-

normal fluid collection within or below the retina that causes vi-
sual dysfunction when it involves the center of the macula. The
natural course of CNV is rapidly deteriorating acuity, scarring
of the pigment epithelium, and permanent visual loss or blind-
ness. Progression of dry AMD can be slowed in many patients
through dietary supplements [19], while visual loss from wet
AMD is treated with intravitreal administration of anti-vascular
growth factor [20], [21].

4) Glaucoma: Glaucoma is the third leading cause of blind-
ness in the U.S., characterized by gradual damage to the optic
nerve and resultant visual field loss [22]. Early diagnosis and
optimal treatment have been shown to minimize the risk of vi-
sual loss due to glaucoma [23]. Glaucoma is primarily a neu-
ropathy, not a retinopathy, and acts on the retina by damaging
ganglion cells and their axons. The hallmark of glaucoma is cup-
ping of the optic disc, which is the visible manifestation of the
optic nerve head (ONH) 3-D structure. The optic disc can be
imaged two-dimensionally either through indirect stereo biomi-
croscopy or with stereo color fundus photography. The ratio of
the optic disc cup and neuroretinal rim surface areas in these im-
ages, called cup-to-disc ratio, is an important structural indicator
for assessing the presence and progression of glaucoma. Glau-
coma is typically treated with ocular pressure lowering drops,
and in refractory cases through surgery.

5) Cardiovascular Disease: Cardiovascular disease mani-
fests itself in the retina in a number of ways. Hypertension and
atherosclerosis cause changes in the ratio between the diameter
of retinal arteries and veins, known as the A/V ratio. A decrease
in the A/V ratio, i.e., thinning of the arteries and widening of the
veins, is associated with an increased risk of stroke and myocar-
dial infarction [24], [25]. Hypertension can also invoke direct
retinal ischemia, which causes retinal infarcts visible as cotton
wool spots and choroidal infarcts visible as deep retinal white
spots. In addition, systemic vascular disease can cause arterial
and venous occlusions, known as central and branch arterial oc-
clusions (CRAO, BRAO) and central and branch venous occlu-
sions (CRVA, BRVO).

C. History of Retinal Imaging

Somewhat paradoxically, the optical properties of the eye that
allow image formation prevent direct inspection of the retina.
In other words, the very nature of the imaging transform re-
sulting in a focused image on the retinal surface disallows de-
piction of the retina when attempting to form a focused retinal
image from the outside via usage of the inverse transform. The
red reflex, when a blurred reflection of the retina makes the
pupil appear red if light is shined into the eye at the appro-
priate angle, was known for centuries. However, special tech-
niques are needed to obtain a focused image of the retina. The
first attempt to image the retina in a cat was completed by the
French physician Jean Mery, who showed that if a live cat is
immersed in water, its retinal vessels are visible from the out-
side. The impracticality of such an approach for humans lead to
the invention of the principles of the ophthalmoscope in 1823
by Czech scientist Jan Evangelista Purkyně (frequently spelled
Purkinje) and its reinvention in 1845 by Charles Babbage [26],
[27]. Note that Babbage also originated the concept of a pro-
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Fig. 3. Early drawing of retinal vasculature including outlines of ONH and
fovea published by Purkyně in 1823 [30].

grammable computer and thus the link between computation
[28] and retinal imaging is not a new one. Finally, the ophthal-
moscope was reinvented again and reported by von Helmholtz in
1851 [29]. Thus, inspection and evaluation of the retina became
routine for ophthalmologists, and the first images of the retina
(Fig. 1) were published by the Dutch ophthalmologist van Trigt
in 1853 [1]. Earlier sketches by Purkyně provided drawings of
his own retinal vasculature [30] (Fig. 3).

Because of the prevalence of infectious diseases at the time
and because the ophthalmoscope required the physician to come
close to the face of the patient, it was attractive to image the
eye photographically. The first useful photographic images of
the retina, showing blood vessels, were obtained in 1891 by the
German ophthalmologist Gerloff [31]. In 1910, Gullstrand de-
veloped the fundus camera, a concept still used to image the
retina today [32]; he later received the Nobel Prize for this inven-
tion. Because of its safety and cost-effectiveness at documenting
retinal abnormalities, fundus imaging has remained the primary
method of retinal imaging.

The next important development was the invention of flu-
orescein angiographic imaging, where a fundus camera with
additional narrow band filters is used to image a fluorescent
dye injected into the bloodstream that binds to leukocytes [33].
It remains widely used because it allows an understanding of
the functional state of the retinal circulation. Concerns about
safety and cost-effectiveness are leading it to be slowly replaced
by tomographic imaging methods for its primary applications,
namely image-guided treatment of macular edema and the “wet
form” of macular degeneration.

A major limitation of fundus photography is that it obtains
a 2-D representation of the 3-D semi-transparent retinal tissues
projected onto the imaging plane. The initial approach to depict
the 3-D shape of the retina was stereo fundus photography, as
first described by Allen in 1964 [34], where multi-angle images
of the retina are combined by the human observer into a 3-D
shape. Subsequently, confocal scanning laser ophthalmoscopy
was developed, using the confocal aperture to obtain multiple
images of the retina at different confocal depths, yielding es-
timates of 3-D shape. However, the optics of the eye limit the
depth resolution of confocal imaging to approximately 100 m
which is poor when compared with the typical 300–500 m
thickness of the whole retina [35]. Tomographic imaging of the
retina became commonplace with the development of super-lu-
minescent diodes, femtosecond lasers and the application of
optical coherence tomography (OCT) to retinal imaging [36],
which allows truly 3-D optical sectioning of the retina [37].

D. History of Retinal Image Processing

Matsui et al. were the first to publish a method for retinal
image analysis, primarily focused on vessel segmentation
[38]. Their approach was based on mathematical morphology
and they used digitized slides of fluorescein angiograms of
the retina. In the following years, there were several attempts
to segment other anatomical structures in the normal eye,
all based on digitized slides. The first method to detect and
segment abnormal structures was reported in 1984, when Bau-
doin et al. described an image analysis method for detecting
microaneurysms, a characteristic lesion of diabetic retinopathy
[39]. Their approach was also based on digitized angiographic
images. The work of Baudoin et al. detected microaneurysms
using a “top-hat” transform, a step-type digital image filter
[40]. The field dramatically changed in the 1990s with the
development of digital retinal imaging and the expansion of
digital filter-based image analysis techniques. These develop-
ments resulted in a rapidly increasing number of publications
that is continuing to expand.

Closely related to retinal image analysis, the first multicenter,
randomized clinical trials in the history of ophthalmology, the
Diabetic Retinopathy Study and especially the Early Treatment
of Diabetic Retinopathy Study, showed the relevance of the
thickness of retinal structures.

II. CURRENT STATUS OF RETINAL IMAGING

Retinal imaging has developed rapidly during the last 160
years and is a now a mainstay of the clinical care and man-
agement of patients with retinal as well as systemic diseases.
Fundus photography is widely used for population-based, large
scale detection of diabetic retinopathy, glaucoma, and age-re-
lated macular degeneration. Optical coherence tomography
(OCT) and fluorescein angiography are widely used in the di-
agnosis and management of patients with diabetic retinopathy,
macular degeneration, and inflammatory retinal diseases. OCT
is also widely used in preparation for and follow-up in vitreo-
retinal surgery.

A. Fundus Imaging

We define fundus imaging as the process whereby a 2-D rep-
resentation of the 3-D retinal semi-transparent tissues projected
onto the imaging plane is obtained using reflected light. Thus,
any process which results in a 2-D image, where the image in-
tensities represent the amount of a reflected quantity of light, is
fundus imaging. Consequently, OCT imaging (Section II-B) is
not fundus imaging, while the following modalities/techniques
all belong to the broad category of fundus imaging:

1) fundus photography (including so-called red-free pho-
tography)—image intensities represent the amount of
reflected light of a specific waveband;

2) color fundus photography—image intensities represent the
amount of reflected R, G, and B wavebands, as determined
by the spectral sensitivity of the sensor;

3) stereo fundus photography—image intensities represent
the amount of reflected light from two or more different
view angles for depth resolution;
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4) hyperspectral imaging—image intensities represent the
amount of reflected light of multiple specific wavelength
bands;

5) scanning laser ophthalmoscopy (SLO)—image intensities
represent the amount of reflected single wavelength laser
light obtained in a time sequence;

6) adaptive optics SLO—image intensities represent the
amount of reflected laser light optically corrected by
modeling the aberrations in its wavefront;

7) fluorescein angiography and indocyanine angiog-
raphy—image intensities represent the amounts of emitted
photons from the fluorescein or indocyanine green fluo-
rophore that was injected into the subject’s circulation.

1) Technical Challenges in Fundus Imaging: Since the retina
is normally not illuminated internally, external illumination pro-
jected into the eye as well as the light reflected by the retina
must traverse the pupillary plane. Thus the size of the pupil, the
small opening in the iris usually between 2 and 8 mm in diam-
eter, has always been the primary technical challenge in fundus
imaging [32]. Fundus imaging is complicated by the fact that
the illumination and imaging beams cannot overlap because that
results in corneal and lenticular reflections diminishing or elim-
inating image contrast. Consequently, separate paths are used
in the pupillary plane, resulting in optical apertures on the order
of only a few millimeters. Because the resulting imaging setup
is technically challenging, fundus imaging historically involved
relatively expensive equipment and highly trained ophthalmic
photographers. Over the last ten years or so, there has been a
major effort to make fundus imaging more accessible, resulting
in less dependence on such experience and expertise due to the
following three most important developments:

1) Move from film-based to digital imaging and as a con-
sequence the importance of Picture Archiving and Com-
munication Systems (PACS) increased in clinical ophthal-
mology, also allowing integration with electronic health
records;

2) Requirement for population-based early detection of
retinal diseases using fundus imaging (Section IV-B);

3) More straightforward operation of fundus cameras by non-
ophthalmic photographers due to non-mydriatic imaging,
digital imaging with near-infrared focusing, and increasing
reproducibility through standardized imaging protocols.

Though standard fundus imaging is widely used, it is not suit-
able for retinal tomography, because of the mixed backscatter
caused by the semi-transparent retinal layers. Consequently, the
backscatter’s origin is decoupled from the specific retinal depth
location.

B. Optical Coherence Tomography Imaging

The principle of Optical Coherence Tomography (OCT) is the
estimation of the depth at which a specific backscatter originated
by measuring its time of flight. Backscatters are typically caused
by differences in refractive index in transitions from one tissue
to another. The backscatter from deeper tissues can be differ-
entiated from backscatter originating at more superficial tissues
because it takes longer for the light to arrive at the sensor. As
the total retinal thickness is between 300–500 m, the differ-

ences in time of flight are very small and can only be measured
through interferometry [36].

OCT employs low-coherent light interferometry, also called
white light interferometry—though the wavelengths used for
OCT are usually slightly longer than visible light. Low-coherent
light autocorrelates only for a short amount of time, or equiva-
lently, for only a small number of wavelengths, while autocor-
relation function values are essentially zero beyond that.

Low-coherent illumination can be thought of as a train of
highly autocorrelated overlapping “bursts” of light—each burst
labeled by its unique autocorrelogram. While we use the term
“burst” to make the description more intuitive, it is important
to understand that the low-coherent light is actually continuous
and not pulsed. To determine the time delay of the low-coherent
light that has backscattered from the retina, and thus the depth
at which the backscatter occurred, the bursts are identified by
their autocorrelation function. By splitting low coherent light
optically, sending one reference beam to reflect from a mirror
at a specific distance, the other to reflect from the tissues in
the retina, non-zero cross-correlation (or interference) between
the two reflected beams occurs only when their flight times are
equal, being zero everywhere else because of the low coherence
property. It is the envelope, or energy, of the non-zero inter-
ferogram that is converted into an intensity that represents the
amount of backscatter from the image location

(1)

where and equal the splitting ratio for the reference and
sample arm, respectively, is the source intensity, and the
complex degree of coherence, equal to

(2)

with being the center wavelength of and the width of
in the frequency domain. Therefore, the amount of light coher-
ence as measured (1) is inversely proportional to the depth that
can be resolved: the less coherent the light, the narrower the au-
tocorrelogram, and thus the narrower the peak in the cross-cor-
relation with the reference arm. Wavelengths longer than vis-
ible light penetrate deeper into retinal and choroidal tissue, and
thus OCT technology is dependent on broadband near infrared
or even infrared light sources, such as super-luminescent LEDs.

Commonly, a beam splitter is used to split the light into the
two beams: a beam that reflects of the retinal tissue represents
the sample arm and a beam that is reflected from the refer-
ence mirror is called the reference arm (Fig. 4). The interfer-
ogram energy between the reference and sample arms is con-
verted into image intensities with a photo sensor, CCD, or a
CMOS sensor. A depth scan, typically known as an A-scan using
ultrasound terminology, with different intensities representing
the backscatter at different depths, is created from the interfer-
ogram intensities. For 3-D imaging—same as in scanning laser
ophthalmoscopy—the illuminating beam is moved across the
retina, typically using galvanic mirrors that change the posi-
tion in two directions (along and axes), resulting in a to-
mographic image with an A-scan for each and location.
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Fig. 4. Schematic diagram of OCT, with emphasis on splitting of the light,
overlapping train of labeled bursts based on their autocorrelogram, and their
interference after being reflected from retinal tissue as well as from the reference
mirror (assuming the time delays of both paths are equal).

Different approaches have been used to maximize the number
of A-scans that can be obtained per unit of time, because re-
ducing motion artifacts, patient comfort, and achieving high
image resolution are all dependent on achieving short A-scan
imaging intervals. Three main OCT principles were developed
to create an A-scan for the desired tissue depth range.

1) Time-domain OCT, or time-of-flight OCT, where the refer-
ence mirror is moved mechanically to different positions,
resulting in different flight time delays for the reference
arm light. Because the speed at which the mirror can be
moved is mechanically limited, only thousands of A-scans
can be obtained per second. The envelope of the interfero-
gram determines the intensity at each depth [36].

2) Swept-source or time encoded frequency domain OCT,
where instead of moving the reference arm, the light
source is rapidly modulated over its center wavelength,
essentially attaching a second label to the light, its wave-
length. A photo sensor is used to measure the correlogram
for each center wavelength over time. A Fourier transform
on the multiwavelength or spectral interferogram is per-
formed to determine the depth of all tissue scatters at the
imaged location [41].

3) Spectral-domain OCT is similar to swept-source OCT, but
instead of modulating the light source wavelength, a broad-
band light source is used (broader than in time-domain
OCT), and the interferogram is decomposed spectrally
using (typically) diffraction grating and a CMOS or CCD
linear sensor. The Fourier transform is again applied to the
spectral correlogram intensities to determine the depth of
each scatter signal [41].

1) Three-Dimensional OCT Imaging: Originally, OCT
imaging was highly limited by the amount of time it took to
image an A-scan. Therefore the correlogram intensities were
displayed to the user in the form of 2-D slices, called B-scans,
with the A-scans in the B-scan obtained from a single sweep
of the scanning beam over the retina in a linear or circular
fashion. Increased A-scanning speed resulted in the possibility
of increased numbers of B-scans per examination. The ability
to image the retina two-dimensionally and three-dimensionally
then depends on the number of A-scans that can be acquired
over time. Because of motion artifacts such as saccades, safety
requirements limiting the amount of light that can be projected
onto the retina, and patient comfort, 1–3 seconds per image
or volume is essentially the limit of acceptance. Thus, the
commercially available time-domain OCT, which allowed
collecting of up to 400 A-scans per second, has not yet been
suitable for 3-D imaging. With spectral-domain OCT, tens of
thousands of A-scans can be acquired each second, and thus
true 3-D imaging is routinely possible. Consequently, 3-D OCT
is now in wide clinical use and has become the standard of care.
With swept-source OCT, hundreds of thousands of A-scans
can be obtained every second, promising additional increase in
image resolution when acquiring 3-D image volumes.

2) Resolution, Isotropic Imaging: The transverse resolution
of OCT scans (i.e., in the directions) depends on the speed
and quality of the galvanic scanning mirrors and is typically
20–40 m. The resolution of the A-scans along the direction
depends on the coherence of the light source and is currently
4–8 m in commercially available scanners.

As explained above, obtaining 2-D or 3-D OCT images is
largely a matter of the scanning speed versus the amount of
time available for scanning. A crude 3-D volume was initially
created by juxtaposing several B-scan slices spaced widely
apart. With the advent of faster scanners, the spaces between
B-scans were minimized and currently some commercially
available scanners are capable of acquiring close-to-isotropic
3-D volumes. Isotropic (isometric) means that the size of each
imaged element, or voxel, is the same in all three dimensions.
Current commercially available OCT devices routinely offer
voxel sizes of 30 30 2 m, achieving isometricity in
the plane only (note the difference between resolution
and voxel size). Another way of explaining isotropicity (in
the plane) is that the spacing between the acquired
B-scans (in what we call the -dimension) is the same as the
distance between each A-scan in the B-scans (in what we call
the -dimension). Available SD-OCT scanners are never truly
isotropic, because the retinal tissue in each A-scan is sampled at
much smaller intervals in depth than are the distances between
A- and/or B-scans. The resolution in depth (or what we call
the -dimension) is currently always higher than the resolution
in the plane. The primary advantage of isotropic
imaging when quantifying properties of the retina is that fewer
assumptions have to be made about the tissue in-between the
measured samples, thus potentially leading to more accurate
indices of retinal morphology.
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C. Areas of Active Research in Retinal Imaging

Retinal imaging is rapidly evolving and newly completed re-
search results are quickly translated into clinical use. Much of
the active research is beyond the scope of this review but several
active directions deserve at least basic coverage.

1) Portable, Cost-Effective Fundus Imaging: For early de-
tection and screening, the optimal place for placing fundus cam-
eras is where the patients are: medicine and family care clinics,
rapid clinics in shopping malls, etc., Though the transition from
film based to digital fundus imaging has revolutionized the art
of fundus imaging and made telemedicine applications feasible,
the current cameras are still too bulky, expensive and may be
difficult to use for nontrained staff in places lacking ophthalmic
imaging expertise. Several groups are attempting to create more
cost-effective and easier-to-use handheld fundus cameras, em-
ploying a variety of technical approaches [42], [43].

2) Functional Imaging: For the patient as well as for the
clinician, the outcome of disease management is mainly con-
cerned with the resulting organ function, not its structure. In
ophthalmology, current functional testing is mostly subjective
and patient dependent, such as assessing visual acuity and uti-
lizing perimetry, which are all psychophysical metrics. Among
more recently developed “objective” techniques, oxymetry is
a hyper-spectral imaging technique, in which multispectral
reflectance is used to estimate the concentration of oxygenated
and deoxygenated hemoglobin in the retinal tissue [44]. The
principle allowing to sense such differences is simple: deoxy-
genated hemoglobin reflects longer wavelengths better than
does oxygenated hemoglobin. Nevertheless, measuring abso-
lute oxygenation levels with reflected light is difficult because
of the large variety in retinal reflection across individuals and
the variability caused by the imaging process. The retinal
reflectance can be modeled by a system of equations, and this
system is typically under-constrained if this variability is not ac-
counted for adequately. Increasingly sophisticated reflectance
models have been developed to correct for the underlying
variability, with some reported success [45]. Near-infrared
fundus reflectance in response to visual stimuli is another way
to determine the retinal function in vivo and has been successful
in cats. Initial progress was demonstrated in humans [46].

3) Adaptive Optics: Through the evolutionary processes, the
human eye and retina are well matched for optimal visual per-
formance. The optical properties of the normal eye result in a
point spread function width approximately the size of a pho-
toreceptor. It is therefore impossible to image individual cells
or cell structure using standard fundus cameras because of aber-
rations in the human optical system. Adaptive optics uses me-
chanically activated mirrors to correct the wavefront aberrations
of the light reflected from the retina and thus has allowed indi-
vidual photoreceptors to be imaged in vivo [47]. Imaging other
cells, especially the clinically highly important ganglion cells,
has so far been unsuccessful.

4) Longer Wavelength OCT Imaging: Three-dimensional
OCT imaging is now the clinical standard of care for several
eye diseases. However, the wavelengths around 840 m used
in currently available devices only allow imaging of the retina.
Deeper structures, such as the choroidal vessels, which are
important in AMD and uveitis, and the lamina cribrosa—a

deep structure in the optic nerve relevant for glaucomatous
damage—are not visualized. Because longer wavelengths
penetrate deeper into the tissue, a major research effort has
been invested to developing low-coherence swept-source lasers
with center wavelengths of 1000–1300 m. Prototypes of these
devices are already able to resolve detail in the choroid and
lamina cribrosa [48].

III. DISEASE-SPECIFIC ANALYSIS OF RETINAL IMAGES

The everyday cost associated with eye care providers’ deci-
sions and the ever-increasing numbers of retinal images to be
reviewed are the major motivations for the adoption of image
analysis in ophthalmology. Clearly, since clinicians are costly
experts, they need to optimize the time devoted to each pa-
tient, whether their cost is born by patients, third party insurers,
or society as a whole. As presented in the following sections,
the development of new imaging technology invariably results
in rapidly increasing amounts of data collected as part of any
specific retinal imaging exam. The amount of information pro-
vided by the current generation of scanners and cameras is al-
ready exceeding the limit of clinicians’ ability to fully utilize
it. When factoring in that clinicians are subjective, and their
decisions suffer from the inter- and intra-observer variability,
the need for reliable computerized approaches to retinal image
analysis is more than obvious, if for no other reason, than to
increase the precision with which patients are managed. An ad-
ditional important reason for incorporating automated analyses
of retinal images in patient management is the potential societal
benefit of increasing clinician productivity in a routine popula-
tion screening setting. While the patient management decision
making and population screening scenarios are somewhat dif-
ferent and specific, they both require quantitative retinal image
analysis to be rapidly translated to everyday use.

A. Early Detection of Retinal Disease From Fundus
Photography

The most obvious example of a retinal screening applica-
tion is retinal disease detection, in which the patient’s retinas
are imaged in a telemedicine remote manner. This scenario
requires utilizing easy-to-use, relatively low-cost fundus cam-
eras, automated analyses of the images, and focused reporting
of the results. This screening application has spread rapidly
over the last few years, with the exception of the automated
analysis behavior, and is one of the most successful examples of
telemedicine [49]. While screening programs exist for detection
of glaucoma, age-related macular degeneration, and retinopathy
of prematurity, the main screening application focuses on early
detection of diabetic retinopathy.

Early detection of diabetic retinopathy (Section I-B2) via
population screening associated with timely treatment have
been shown to prevent visual loss and blindness in patients
with retinal complications of diabetes [50], [51]. Almost 50%
of people with diabetes in the U.S. currently do not undergo
any form of regular documented dilated eye exam, in spite of
guidelines published by the American Diabetes Association,
the American Academy of Ophthalmology and the American
Optometric Association [52]. In the U.K., a smaller proportion
or approximately 20% of diabetics are not regularly evaluated,



176 IEEE REVIEWS IN BIOMEDICAL ENGINEERING, VOL. 3, 2010

as a result of an aggressive effort to increase screening for
people with diabetes. Blindness and visual loss can be pre-
vented through early detection and timely management. There
is widespread consensus that regular early detection of diabetic
retinopathy via screening is necessary and cost-effective in
people with diabetes [8], [53]–[55]. Remote digital imaging
and ophthalmologist expert reading have been shown to be
comparable or superior to an office visit for assessing DR
[56], [57] and have been suggested as an approach to make the
dilated eye exam available to un- and under-served populations
that do not receive regular exams by eye care providers. If all of
these underserved populations were to be provided with digital
imaging, the annual number of retinal images requiring evalua-
tion would exceed 32 million in the U.S. alone (approximately
40% of people with diabetes with at least two photographs per
eye) [57], [58].

In the next decade, projections for the U.S. are that the average
age will increase, the number of people with diabetes in each age
category will increase, and there will be an under-supply of quali-
fied eye care providers, at least in the near term. Several European
countries have successfully instigated in their health care sys-
tems early detection programs for diabetic retinopathy using dig-
ital photography with reading of the images by human experts. In
the U.K., 1.7 million people with diabetes were screened for dia-
betic retinopathy in 2007–2008. In the Netherlands, over 30 000
people with diabetes were screened since 2001 in the same pe-
riod, through an early detection project called EyeCheck [59].
The United States Department of Veterans Affairs (VA) has de-
ployed a successful photo screening program in the VA medical
centers, through which more than 120 000 patients were screened
in 2008. While the remote imaging followed by human expert di-
agnosis approach was shown successful for a limited number of
participants, the current challenge is to make the early detection
more accessible by reducing the cost and manpower required,
while maintaining or improving DR detection performance. This
challenge can be met by utilizing computer-assisted or fully au-
tomated methods for detection of DR in retinal images, as de-
scribed in Section IV.

B. Early Detection of Systemic Disease From Fundus
Photography

In addition to detecting diabetic retinopathy and age-related
macular degeneration, it also deserves mention that fundus pho-
tography allows cardiovascular risk factors to be determined.
Such metrics are primarily based on measurement of retinal
vessel properties, such as the arterial to venous diameter ratio,
or A-V ratio, and indicate the risk for stroke, hypertension or
myocardial infarct [60], [61].

C. Three-Dimensional OCT and Retinal Diseases—Image
Guided Therapy

With the introduction of 3-D OCT imaging, the wealth of new
information about the retinal morphology enabled its usage for
close monitoring of retinal disease status and guidance of retinal
therapies.

The most obvious example of successful image-guided man-
agement in ophthalmology is its use in diabetic macular edema

(DME). DME is a form of diabetic retinopathy in which vi-
sual loss occurs through leaking of fluid in the macula—the
central part of the retina. The original research entitled Early
Treatment in Diabetic Retinopathy Study [9], [62]–[64] demon-
strated that early treatment of DME’s thickened areas of the
retina with focal laser can prevent further visual loss. More re-
cently, novel treatment using anti-VEGF agents (anti-vascular
endothelial growth factor), such as ranibizumab combined with
focal laser, has shown to be beneficial for treatment of DME.
Currently, OCT imaging is widely used to determine the ex-
tent and amount of retinal thickening. We expect that detailed
analyses of retinal layer morphology and texture from OCT sim-
ilar to those described in Section V will allow direct image-
based treatment to be guided by computer-supported or auto-
mated quantitative analysis of OCT and subsequently optimized
allowing personalized approach to retinal disease treatment to
become a reality.

Another highly relevant example of a blinding disease that
will benefit from image guided therapy is choroidal neovas-
cularization—the wet form of age related macular degenera-
tion (Section I-B3). With the advent of the anti-VEGF agents
ranibizumab and bevacizumab, it has become clear that outer
retinal and subretinal fluid is the main indicator of a need for
anti-VEGF retreatment [21], [65]–[67]. Several studies are un-
derway to determine whether OCT-based quantification of fluid
parameters and affected retinal tissue can help improve the man-
agement of patients with anti-VEGF agents.

As described above, glaucoma is characterized by gradual
damage to the optic nerve and resultant visual field loss
(Section I-B4) [22]. Early diagnosis and optimal treatment have
been shown to minimize the risk of visual loss due to glaucoma
[23]. As shown below, 3-D analysis of the optic nerve head
can be used for glaucoma management decisions. However,
it has been previously shown that manual planimetry is time
consuming with substantial inter-observer variability [68].
Methods for automated assessment of the cup-to-disc ratio
and for NCO-based ONH analyses from fundus photography
and from 3-D OCT imaging are presented as follows. Their
adoption for use in routine clinical care is highly desirable.

IV. FUNDUS IMAGE ANALYSIS

As discussed previously in Section II-A, fundus imaging is
the most established way of retinal imaging. Until recently,
fundus image analysis was the only source of quantitative
indices reflecting retinal morphology. Subjects that lend them-
selves for fundus image analysis include:

1) Image quality quantification:
a) image quality verification;
b) imaging artifact detection;
c) iatrogenic lesion detection (laser scars, etc.).

2) Location and segmentation of retinal structures:
a) retinal vessels

• vessel diameter;
• artery and vein classification;
• vessel occlusion detection.

b) fovea
c) optic disc
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Fig. 5. Automated vessel analysis. From left to right: fundus image; retinal specialist annotation; vesselness map from Staal algorithm [76]; vesselness map from
direct pixel classification [73].

• cup and rim;
• cupping.

3) Segmentation of abnormalities:
a) blood vessel related abnormalities

• hemorrhages;
• microaneurysms;
• neovascularizations;
• nerve fiber infarcts (cottonwool spots).

b) pigment epithelium related abnormalities
• drusen;
• hyper and hypopigmentation.

c) choroid related abnormalities
• nevus and melanoma detection;
• uveitis related choroidal lesions.

As this paper went to press, over 700 papers have been
published on these subjects in fundus image analysis, and
discussing each one is beyond the scope of this review.
Therefore, we have focused only on those fundamental tasks
and related approaches to fundus image analysis that are
actively researched by a large number of groups: retinal
vessel detection (Section IV-A), retinal lesion detection
(Section IV-B), construction of fundus-imaging-based retinal
atlases (Section IV-C), and analysis of the optic nerve head
morphology from fundus photographs (Section IV-E), in more
detail. Registration of fundus images and change detection
will be discussed in Section VI-A. In addition, individual
methods have been combined into disease-detection systems,
particularly for diabetic retinopathy [69]–[71].

A. Detection of Retinal Vessels

Automated segmentation of retinal vessels is a generally well
understood problem, aided by the public availability of the an-
notated STARE [72] and DRIVE datasets [73] (Fig. 5) with hun-
dreds of papers published [74], [75]. Pixel feature classification
and identification of elongated structures has been highly suc-
cessful in the detection of large and medium vessels [73], [76].

Though not by design, the similarities among the different
approaches to vessel detection are often not obvious at first, be-
cause of different terms used for the same concepts. For ex-
ample, template matching, kernel convolution, detector corre-
lation all describe the same concept explained in more detail in
the following, though implementation details may vary.

1) Pixel Feature Classification: Pixel feature classification is
a machine learning technique that assigns one or more classes

to the pixels in an image. Pixel classification uses multiple pixel
features: numeric properties of a pixel and its surroundings.
Pixel feature classification is typically performed using a super-
vised approach.

Originally, pixel intensity was used as a single feature. More
recently, -dimensional multifeature vectors are utilized in-
cluding pixel contrast with the surrounding region, its proximity
to an edge, and similarity. Two distinct stages are required for
a supervised learning/classification algorithm to function: 1) a
training stage, in which the algorithm “statistically learns” to
correctly classify pixels from known classifications, and 2) a
testing or classification stage in which the algorithm classifies
previously unseen images. For proper assessment of supervised
classification method functionality, training data and perfor-
mance testing data sets must be completely disjoint [77].

The -dimensional multifeature vectors are calculated for
each pixel, frequently utilizing local convolutions with multiple
Gaussian derivative, Gabor, or other wavelet kernels [78]. The
image is thus transformed into an -dimensional feature space
and pixels are classified according to their position in feature
space. The resulting hard (categorical) or soft (probabilistic)
classification is then used to either assign labels to each pixel
(for example vessel or nonvessel in the case of hard classifi-
cation), or to construct class-specific likelihood maps (e.g., a
vesselness map for soft classification).

For example, an image can be transformed into the
Gaussian derivative space by convolution with
Gaussian derivative kernels as follows:

(3)

where represents convolution, is the relative
scale, and is the Gaussian derivative kernel of order

with orientation .
The number of potential features in the multifeature vector

that can be associated with each pixel is essentially infinite.
One or more subsets of this infinite set can be considered op-
timal for classifying the image according to some reference
standard. Hundreds of features for a pixel can be calculated in
the training stage to cast as wide a net as possible, with algo-
rithmic feature selection steps used to determine the most dis-
tinguishing set of features. Extensions of this approach include
different approaches to subsequently classify groups of neigh-
boring pixels by utilizing group properties in some manner, for
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Fig. 6. Automated analysis of fundus photographs. (a) Fundus photograph showing several lesions typical of diabetic retinopathy. (b) Detection of red lesions
(RL)—microaneurysms and hemorrhages. (c) Detection of bright lesions (BL)—lipoprotein exudates. (d) Detection of neovascularization (NVD) of the optic disc.
(e) All automatically detected lesions shown.

Fig. 7. Typical steps necessary for analysis of fundus images, in this case for early diabetic retinopathy. Top row from left to right: original image; detection of
fovea and optic disc superimposed as yellow circles on the vesselness map; automatically detected red lesions indicated in shades of green, bright lesions in shades
of blue. Bottom row: details of red and bright lesion detection steps shown in a small region of the image including pixel classification identifying suspect pixels,
clustering of suspect pixels, and classification of clusters as lesions.

example cluster feature classification, where the size, shape and
average intensity of the cluster may be used.

2) Vessel Diameter and Vessel Tree Analysis: Because retinal
vessel diameter and especially the relative diameters of arteries
and veins are known to signal the risk of systemic diseases in-
cluding stroke, accurate determination of retinal vessel diam-
eters, as well as differentiation of veins and arteries have be-
come more important, several semi-automated and automated
approaches have now been published [24], [25], [79]. Other ac-
tive areas of research include separation of arteries and veins,
detection of small vessels with diameters of less than a pixel,
and analysis of the complete vessel trees using graphs.

B. Detection of Retinal Lesions

In this section, we will primarily focus on detection of le-
sions in diabetic retinopathy. It has the longest history as a re-
search subject in retinal image analysis. Fig. 6 shows exam-
ples of a fundus photograph with the typical lesions automat-
ically detected. Many approaches used the following principle
(Fig. 7): A transform of some kind is used for detecting can-
didate lesions, after which a mathematical morphology tem-
plate is utilized to characterize the candidates. This approach
or a modification thereof is in use in many algorithms for de-
tecting DR and AMD [80]. Additional enhancements include
the contributions of Spencer, Cree, Frame, and co-workers [81],

[82]. They added preprocessing steps, such as shade-correction
and matched filter post-processing to this basic framework, to
improve performance. Algorithms of this kind function by de-
tecting candidate microaneurysms of various shapes, based on
their response to specific image filters. A supervised classifier is
typically developed to separate the valid microaneurysms from
spurious or false responses. However, these algorithms were
originally developed to detect the high-contrast signatures of
microaneurysms in fluorescein angiogram images. The next im-
portant development resulted from applying a modified version
of the top-hat algorithm to red-free fundus photographs rather
than angiogram images, as was first described by Hipwell et al.
[83]. They tested their algorithm on a large set of 3500 images
and found a sensitivity/specificity operating point of 0.85/0.76.
Once this step had been taken, development accelerated. The
approach was further refined by broadening the candidate de-
tection transform, originally developed by Baudoin to detect
candidate pixels, to a multifilter filter-bank approach [73], [84].
The filter responses are used to identify pixel candidates using
a classification scheme. Mathematical morphology and addi-
tional classification steps are applied to these candidates to de-
cide whether they indeed represent microaneurysms and hem-
orrhages. A similar approach was also successful in detecting
other types of DR lesions, including exudates or cotton-wool
spots, as well as drusen in AMD [85].
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Fig. 8. Red lesion pixel feature classification. (a) Part of green color plane of a fundus image. Shown are pieces of vasculature and several red lesions. Bright
lesions called exudates are also a symptom of DR. Circles mark location of some of the red lesions in the image. (b) After subtracting median filtered version
of the green plane large background gradients are removed. (c) All pixels with a positive value are set to zero to eliminate bright lesions in the image. Note that
exudates often partially occlude red lesions. Non-occluded parts of red lesions show up clearly in this image. An example of this is marked with a rectangle.
(d) Pixel classification result produced by contrast enhancement step. Non-occluded parts of hemorrhages are visible together with the vasculature and a number
of red lesions.

Fig. 9. Red lesion detection. (a) Thresholded probability map. (b) Remaining objects after connected component analysis and removal of large vasculature.
(c) Shape and size of extracted objects in panel (b) does not correspond well with actual shape and size of objects in original image. Final region growing procedure
is used to grow back actual objects in original image which are shown here. In (b) and (c), the same red lesions as in Fig. 8(a) are indicated with a circle.

1) Detection of Red Lesions: Small red retinal lesions,
namely microaneurysms and small retinal hemorrhages, are
typical for diabetic retinopathy, hypertensive retinopathy, and
other retinal disorders such as idiopathic juxtafoveal teleang-
iectasia. The primary importance of small red lesions is that
they are the leading indicators of diabetic retinopathy. Because
they are difficult to differentiate for clinicians on standard
fundus images from nonmydriatic cameras, hemorrhages and
microaneurysms are usually detected together and associated
with a single combined label. Larger red lesions, primarily

large hemorrhages and retinal neovascularizations are still
problematic and are discussed in Section IV-B3.

Historically, red lesion detection algorithms focused on detec-
tion of normal anatomical objects, especially the vessels, because
they can locally mimic red lesions. Subsequently, a combination
of one or more filtering operations combined with mathematical
morphology is employed to detect red lesion suspects. In some
cases, suspect red lesion are further classified in individual lesion
types and refined algorithms are capable of detecting specific
retinal structures and abnormalities as shown in Figs. 7–9.
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Initially, red lesions were detected in fluoroscein angiograms
because their contrast against the background is much higher
than that of microaneurysms in color fundus photography images
[81], [82], [86]. Hemorrhages mask out fluorescence and present
as dark spots in the angiograms. These methods employed a
mathematical morphology technique that eliminated the vas-
culature from a fundus image but left possible microaneurysm
candidates untouched as first described in 1984 [39]. Later,
this method was extended to high-resolution red-free fundus
photographs by Hipwell et al. [83]. Instead of using morphology
operations, a neural network was used, for example by Gardner
et al. [87]. In their work, images are divided into 20 20 pixel
grids and the grids are individually classified. Sinthanayothin et
al. [88] applied a recursive region growing procedure to segment
both the vessels and red lesions in a fundus image. A neural
network was used to detect the vessels exclusively, and the
remaining objects were labeled as microaneurysms.

Niemeijer et al. [84] presented a hybrid scheme that used both
the top-hat based method as well as a supervised pixel classi-
fication based method to detect the microaneurysm candidates
in color fundus photographs. This method allowed for the de-
tection of larger red lesions (i.e., hemorrhages) in addition to
the microaneurysms using the same system. A large set of addi-
tional features, including color, was added to those described in
[82] and [86]. Using the features in a supervised classifier dis-
tinguished between real and spurious candidate lesions. These
algorithms can usually deal with overlapping microaneurysms
because they give multiple candidate responses.

Other recent algorithms only detect microaneurysms and
forego a phase of detecting normal retinal structures like the
optic disc, fovea and retinal vessels, which can act as con-
founders for abnormal lesions. Instead, the recent approaches
find the microaneurysms directly [89] using template matching
in wavelet-subbands. In this approach, the optimal adapted
wavelet transform is found using a lifting scheme framework.
By applying a threshold on the matching result of the wavelet
template, the microaneurysms are labeled. This approach has
meanwhile been extended to explicitly account for false neg-
atives and false positives [69]. Because it avoids detection of
the normal structures, such algorithms can be very fast, on the
order of less than a second per image.

2) Detection of Bright Lesions: Often, bright lesions, defined
as lesions brighter than the retinal background, can be found in
the presence of retinal and systemic disease. Drusen are the hall-
mark of age-related macular degeneration, cotton wool spots are
typical for diabetic retinopathy and hypertensive retinopathy,
while lipoprotein exudates are most frequently seen in diabetic
retinopathy, but also in Coats’ disease and other retinal disor-
ders. To complicate the analysis, flash artifacts can be present
as false positives for bright lesions. If the lipoprotein exudates
would only appear in combination with red lesions, they would
only be useful for grading diabetic retinopathy. The exudates
can, however, in some cases appear as isolated signs of dia-
betic retinopathy in the absence of any other lesion. Therefore,
their importance is strengthened and several computer-based
systems to detect exudates have been proposed [80], [85], [87],
[88], [90].

Because the different types of bright lesions have different di-
agnostic importance and patient management implications, al-
gorithms should be capable not only of detecting bright lesions,
but also of differentiating among the bright lesion types. One
example algorithm capable of detection and differentiation of
bright lesions was reported in [85]. The algorithm is based on
an earlier red lesion algorithm [84] and includes the following
main steps.

1) Classification—resulting in a lesion probability map that
indicates the likelihood of each pixel to be part of a bright
lesion.

2) Lesion candidate cluster detection—clustering pixels into
highly probable lesion regions.

3) True bright lesion detection—classifying each candidate
cluster as true lesion, based on cluster features such as sur-
face area, length of major axis, mean gradient, standard de-
viation of pixel values, pixel contrast, Gaussian derivative
responses, and local vesselness (as derived from a vessel
segmentation map).

4) Differentiation of lesions into drusen, exudates and cotton-
wool spots—a third classifier uses the features for classi-
fying true bright lesions as well the number of red and true
bright lesions in the image to determine the likelihood for
the true bright lesion of specific types.

Fig. 10 illustrates these steps. Compared to retinal experts, the
algorithm performed with an area under the ROC curve of

for detecting bright lesions. The performance of
was achieved for the detection and differenti-

ation of exudates, cotton-wool spots, and drusen, respectively.
3) Detection of Rare, or Irregular, Lesions and Abnormal-

ities: Performance of a system that has been developed for
screening should not be evaluated based solely on its sensitivity
and specificity for detection of that disease. Such metrics do
not accurately reflect the complete performance in a screening
setup. Rare, irregular, or atypical lesions often do not occur
frequently enough in standard datasets to affect sensitivity and
specificity but can have huge health and safety implications.
To maximize screening relevance, the system must therefore
have a mechanism to detect rare, atypical, or irregular abnor-
malities, for example in DR detection algorithms [70]. For
proper performance assessment, the types of potential false
negatives—lesions that can be expected or shown to be incor-
rectly missed by the automated system—must be determined.
While detection of red lesions and bright lesions is widely
covered in the literature, detection of rare or irregular lesions,
such as hemorrhages, neovascularizations, geographic atrophy,
scars and ocular neoplasms has received much less attention,
despite the fact that they all can occur in combination with
diabetic retinopathy and other retinal diseases as well as in
isolation. For example, presence of such lesions in isolated
forms and without any co-occurrence of small red lesions are
rare in DR [59] and thus missing these does not affect standard
metrics of performance such as ROC curves to a measurable
degree, except if these are properly weighted as corresponding
to serious lesions.

One suitable approach for detecting such lesions is to use a
retinal atlas, where the image is routinely compared to a generic
normal retina (Section IV-C). After building a retinal atlas by
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Fig. 10. Bright lesion detection algorithm steps performed to detect and dif-
ferentiate “bright lesions.” From left to right: exudates, cotton-wool spots, and
drusen. From top to bottom: relevant regions in the retinal color image (all at
same scale); a posteriori probability maps after first classification step; pixel
clusters labeled as probable bright lesions (potential lesions); bottom row shows
final labeling of objects as true bright lesions, overlaid on original image.

registering the fundus images according to a disc, fovea and a
vessel-based coordinate system, image properties at each atlas
location from a previously unseen image can be compared to
the atlas-based image properties. Consequently, locations can
be identified as abnormal if groups of pixels have values outside
the normal atlas range.

C. Retinal Atlas

Compared to other anatomic structures (e.g., the brain,
heart, or lungs), the retina has a relatively small number of key
anatomic structures (landmarks) visible using fundus camera
imaging. Additionally, the expected shape, size, and color vari-
ations across a population is expected to be high. While there
have been a few reports [91] on estimating retinal anatomic
structure using a single retinal image, we are not aware of any
published work demonstrating the construction of a statistical
retinal atlas using data from a large number of subjects.

The choice of atlas landmarks in retinal images may vary de-
pending on the view of interest. Regardless, the atlas should rep-
resent most retinal image properties in a concise and intuitive
way. Three landmarks can be used as the retinal atlas key fea-
tures; the optic disc center, the fovea, and the main vessel arch

defined as the location of the largest vein–artery pairs. The disc
and fovea provide landmark points, while the arch is a more
complicated two-part curved structure that can be represented
by its central axis. The atlas coordinate system then defines
an intrinsic, anatomically meaningful framework within which
anatomic size, shape, color, and other characteristics can be ob-
jectively measured and compared.

Choosing either the disc center or fovea alone to define the
atlas coordinate system would allow each image from the popu-
lation to be translated so a pinpoint alignment can be achieved.
Choosing both disc and fovea allows corrections for translation,
scale, and rotational differences across the population. However,
nonlinear shape variations across the population would not be
considered—which can be accomplished when the vascular arch
information is utilized. The end of the arches can be defined as
the first major bifurcations of the arch branches. The arch shape
and orientation vary from individual to individual and influence
the structure of the remaining vessel network. Establishing an
atlas coordinate system that incorporates the disc, fovea and
arches allows for translation, rotation, scaling, and nonlinear
shape variations to be accommodated across a population.

An isotropic coordinate system for the atlas is desirable so
images can refer to the atlas independent of spatial pixel loca-
tion by a linear one-to-one mapping. The radial-distortion-cor-
rection (RADIC) model [92] attempts to register images in a dis-
tortion-free coordinate system using a planar-to-spherical trans-
formation, so the registered image is isotropic under a perfect
registration, or quasi-isotropic allowing low registration error.
As shown in Fig. 11, the fundus curvature can be represented
in the registration result using the quadratic model, while the
RADIC-based registration unfolds the curvature to put the reg-
istered image in an isotropic coordinate system. An isotropic
atlas makes it independent of spatial location to map correspon-
dences between the atlas and test image. The intensities in over-
lapping area are determined by a distance-weighted blending
scheme [93].

1) Landmark Statistics: Retinal images in clinical practice
are acquired under diverse fundus camera settings subjected
to saccadic eye movement; and with variable focal center,
zooming, tilting, etc. Thus, atlas landmarks from training
data need to be aligned to derive any meaningful statistical
properties from the atlas. Since the projective distortion within
an image is corrected during the pairwise registration, the
inter-image variations in the registered images appear as the
difference in the rigid coordinate transformation parameters of
translation, scale and rotation.

For each pair of landmarks and , where
and , pinning all landmarks

to an arbitrary point clears the translation. The centroid
of the point cloud formed by landmarks is evaluated to get
the fovea atlas location so every can be aligned to
using the similarity transformation to remove the inter-image
variations in scale and rotation. The steps of rigid coordinate
alignment for each parameter are illustrated in Fig. 12. Conse-
quently, an aligned pixel position is determined using as

(4)
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Fig. 11. Registration of fundus image pair using (a) quadratic model and (b) RADIC model. Vessel center lines are overlaid for visual assessment of registration
accuracy. This registration is performed to disk-centered and macula-centered images to provide an increased anatomic field of view.

Fig. 12. Registration of anatomic structures according to increasing complexity of registration transform—500 retinal vessel images are overlaid and marked with
one foveal point landmark each (red spots). Rigid coordinate alignment by (a) translation, (b) translation and scale, and (c) translation, scale, and rotation.

where , , and are the differences in scale, rotation
and translation measured between point pairs of
and , and the rotation matrix is defined as

.
2) Coordinate Mapping: The atlas landmarks serve as the

reference set so each color fundus image can be mapped to the
coordinate system defined by the landmarks. As the last step of
atlas generation, color fundus images are warped to the atlas
coordinate system so that the arch of each image is aligned to
the atlas vascular arch. A thin-plate-spline (TPS) [94] is used in
this method for mapping retinal images to the atlas coordinate
system. Rigid coordinate alignment as described above is done
for each fundus images to register the disc center and the fovea.
The seven control points required for TPS are determined by
sampling points from equidistant locations in radial directions
centered at the disc center. Consequently, 16 (1 at disc center,
1 at fovea, and 2 7 on vascular arch) control points are used
to calculate the TPS. Usually, the sampling uses smoothed trace
lines utilizing third order polynomial curve fitting because naive
traces of vascular arch lines could have locally high tortuosity,
which may cause large geometric distortions by TPS. Fig. 13

illustrates retinal image mapping process by TPS—the vessel
main arch that runs along the naive trace (yellow line) is mapped
onto the atlas vessel arch (green) line.

3) Using Retinal Atlas to Detect Grossly Abnormal Retina:
By creating a retinal atlas using this method, the atlas can be
used as a reference to quantitatively assess the level of deviation
from normality. An analyzed image can be compared with the
retinal atlas directly in the atlas coordinate space. The normality
can thus be defined in several ways depending on the application
purpose—using local or global chromatic distribution, degree of
vessel tortuosity, presence of pathological features, presence of
artifacts, etc. Fig. 14 shows an example application driven by
a retinal atlas, the region where imaging artifacts are present
are highlighted. The atlas was created from 1000 color fundus
images (two fields per left eye, from 500 subjects without retinal
parthology or imaging artifacts).

Other uses for a retinal atlas include image quality detection
and disease severity assessment. Retinal atlases can also be em-
ployed in content-based image retrieval leading to abnormality
detection in retinal images [95].
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Fig. 13. Atlas coordinate mapping by TPS: (a) before and (b) after mapping. Naive main arch traces obtained by Dijkstra’s line-detection algorithm are drawn as
yellow lines that undergo polynomial curve fitting to result in blue lines. Atlas landmarks (disc center, fovea, and vascular arch) are drawn in green, and equidistant
radial sampling points marked with dots.

Fig. 14. Example application of employing retinal atlas to detect imaging artifacts. (a), (c) Color fundus images with artifacts. (b), (d) Euclidean distance maps
in atlas space using atlas coordinate system. Note that distances are evaluated within atlas image. Consequently, field of view of distance map is not identical to
that of fundus image.

D. Assessing Performance of Fundus Image Analysis
Algorithms

Fundus lesion detection algorithms are primarily intended
to perform automatically and autonomously. In other words,
some retinal images may never be seen by a human expert.
Consequently, high demands must be placed on the fundus le-
sion detection system since the performed diagnostic decisions
may have vision-threatening consequences. Lesion detection
systems are most commonly employed for diabetic retinopathy
screening. In all such systems, a high level of confidence in
the agreement between the system and expert human readers
is required. In reality, the agreement between an automatic
system and an expert reader may be affected by many influ-
ences—system performance may become impaired due to the
algorithmic limitations, the imaging protocol, properties of the
camera used to acquire the fundus images, and a number of
other causes. For example, an imaging protocol that does not
allow small lesions to be depicted and thus detected will lead to
an artificially overestimated system performance if such small
lesions might have been detected with an improved camera or
better imaging protocol. Such a system then appears to perform
better than it truly does if human experts and the algorithm both
overlook true lesions.

The performance of a lesion detection system can be mea-
sured by its sensitivity, a number between 0 and 1, which is the

number of true positives divided by the sum of the total number
of (incorrectly missed) false negatives plus the number of (cor-
rectly identified) true positives [77]. System specificity, also a
number between 0 and 1, is determined as the number of true
negatives divided by the sum of the total number of false posi-
tives (incorrectly identified as disease) and true negatives. Sen-
sitivity and specificity assessment both require ground truth,
which is represented by location-specific discrete values (0 or
1) of disease present/absent for each subject in the evaluation
set.

The location-specific output of an algorithm can also be rep-
resented by a discrete number (0 or 1). However, the output
of the assessment algorithm is often a continuous value deter-
mining the likelihood of local disease presence, with an asso-
ciated probability value between 0 and 1. Consequently, the al-
gorithm can be made more specific or more sensitive by setting
an operating threshold on this probability value . The resulting
sensitivity/specificity pairs are plotted in a graph, yielding a re-
ceiver operator characteristics (ROC) curve [77], [96]. The area
under the ROC curve (AUC, represented by its value ) is
determined by setting a number of different thresholds for .
Sensitivity and specificity pairs of the algorithm are obtained at
each of these thresholds. The ground truth is of course kept un-
changed. The algorithm behavior represented by this ROC curve
can thus be reduced to a single number. The maximum value
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of AUC is 1, denoting a perfect diagnostic performance, with
both the sensitivity and specificity being 1 (100% performance).
While the AUC assessment of performance is highly relevant
and covers the most important aspects of lesion detection be-
havior, this approach has a number of limitations, including its
dependence on the quality of annotated datasets [69], [70] and
on the underestimation of missing rare, but sight- or life-threat-
ening abnormalities, as discussed in Section IV-B3.

1) Performance Comparison of Diabetic Retinopathy De-
tection Systems to That of Retinal Specialists: Several groups
have studied the performance of detection algorithms in a real
world setting, i.e., when the systems are used on populations
of patients with diabetes, not previously known to have dia-
betic retinopathy. The main goal of such a system is to de-
cide whether the patient should be evaluated by a human expert
or can return for followup, only involving automated analysis
of retinal images [70], [71]. As mentioned previously, perfor-
mance of the algorithm that placed first at the 2009 Retinopathy
Online Challenge competition [97] was compared to that of a
large computer-aided early DR detection project EyeCheck [59].
In this comparison, fundus photographic sets from 17 877 pa-
tient visits of 17 877 people with diabetes who had not previ-
ously been diagnosed with DR consisting of two fundus im-
ages from each eye were used for performance comparison.
The fundus photographic set from each visit was analyzed by
a single retinal expert and 792 of the 17 877 sets were clas-
sified as containing more than minimal DR (threshold for pa-
tient referral). The two algorithmic lesion detectors were ap-
plied separately to the dataset and compared by standard sta-
tistical measures. The area under the ROC curve was the main
performance characteristic. The results showed that the agree-
ment between the two computerized lesion detectors was high.
Retinal exams containing more than minimal DR were detected
with an AUC of by the Eyecheck algorithm and an
AUC of for the ROC-2009 winner. This difference in
AUC was not statistically significant (z-score of 1.91). If the de-
tection output of these two algorithms were combined (at least
one detection constituted a hit), the detection AUC increased to

, a value identical to the theoretically expected max-
imum [69]. At 90% sensitivity, the specificity of the EyeCheck
algorithm was 47.7%. The specificity of the ROC-2009 winner
algorithm was 43.6%. By comparison with interobserver vari-
ability of the employed experts, the study concluded that DR
detection algorithms appear to be mature and further improve-
ments in detection performance cannot be differentiated from
the current best clinical practice because the performance of
competitive algorithms has now reached the human intrareader
variability limit [69]. Additional validation studies on larger,
well-defined, but more diverse populations of patients with di-
abetes are urgently needed, anticipating cost-effective early de-
tection of DR in millions of people with diabetes to triage those
patients who need further care at a time when they have early
rather than advanced DR, and such trials are currently underway
in the U.S., U.K., and the Netherlands, though the results have
not yet been disclosed.

2) Multilevel Approach to Lesion Detection: From Pixel to
Patient: As outlined above, the retinal lesion detection algo-
rithms operate at a broad range of levels according to the uti-
lization of the detection algorithm outputs. Such a utility level
is limited at one end by the finite resolution of the imaging de-

vice and at the other end by the feasibility of imaging that can
be employed over a finite time (i.e., number of repeated image
acquisitions on the same subject). At the lowest level, algo-
rithms classify individual pixels, followed by groups of pixels
(possibly representing lesions), areas (organs or organ struc-
tures) in images, and at even higher level, complete images, mul-
tiple images may form a subject-level exam, and finally—at the
highest level—multifaceted analyses of individual subjects are
attempted. At each such level, the probability of abnormality
detection is frequently determined while relying on findings at
previous lower levels. At the highest level the system may be
diagnosing a single patient based on the fused information from
all the lower-level contributions. Clearly, answering the ulti-
mate question how to effectively fuse all such information is
nontrivial.

This subject was studied by Niemeijer et al. [98], and their
approach involved application of multiple unsupervised and
supervised analysis approaches that were compared in terms of
performance at the patient level. A compound computer-aided
retinal diagnostic system was developed that takes into account
abnormalities of multiple types and at multiple levels, as well
as the estimated confidence in individual analysis outcomes. A
reliable analysis scheme was proposed based on a supervised
fusion scheme for combining the output of the different com-
ponents, and its performance evaluated on 60 000 images from
15 000 patients. The choice of the fusion system was identified
as significantly influencing the overall system performance with
simple fusion methods achieving classification performance
associated AUC while the supervised fusion system
reached an AUC [98].

3) Role of Publicly Available and Comparative Databases:
To drive the development of progressively better fundus
image analysis methods, research groups have established
publicly available, annotated image databases in various fields.
Fundus imaging examples are represented by the STARE
[72], DRIVE [73], REVIEW [99] and MESSIDOR databases
[100], with large numbers of annotated retinal fundus images,
with expert annotations for vessel segmentation, vessel width
measurements, and diabetic retinopathy detection, as well as
competitions such as the Retinopathy Online Challenge [97],
some of which will be discussed in the following. A major
inspiration for these online image databases and online com-
petitions was the Middlebury Stereo Vision competition [101],
[102].

4) DRIVE—(Digital Retinal Images for Vessel Evaluation):
The DRIVE database was established to enable comparative
studies on segmentation of retinal blood vessels in retinal fundus
images. It contains 40 fundus images from subjects with dia-
betes, both with and without retinopathy, as well as retinal vessel
segmentations performed by two human observers. In one of the
available images, high-contrast choroidal regions were also seg-
mented because these can be easily confused with retinal ves-
sels. Starting in 2005, researchers have been invited to test their
algorithms on this database and share their results with other re-
searchers through the DRIVE website [103]. At the same web
location, results of various methods can be found and compared.
An early comparative analysis of the performance of vessel seg-
mentation algorithms was reported in [73] and by now, over
100 papers have been published using the DRIVE database as
a benchmark. Currently, retinal vessel segmentation research is
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TABLE I
SENSITIVITIES OF DIFFERENT METHODS IN 2009 ROC COMPETITION (TABLE II IN [97]. ALL MICROANEURYSMS FROM TEST SET WERE INCLUDED)

primarily focusing on improved segmentation of small vessels,
as well as on segmenting vessels in images with substantial ab-
normalities.

ROC—Retinopathy Online Challenge: The DRIVE database
was a great success, allowing comparisons of algorithms on a
comparative dataset. In retinal image analysis, it represented a
substantial improvement over method evaluations on unknown
datasets. However, different groups of researchers tend to use
different metrics to compare the algorithm performance, making
truly meaningful comparisons difficult or impossible. Addition-
ally, even when using the same evaluation measures, implemen-
tation specifics of the performance metrics may influence final
results. Consequently, until the advent of the Retinopathy On-
line Challenge ROC competition in 2009, comparing the perfor-
mance of retinal image analysis algorithms was difficult [97].

A logical next step was therefore to provide publicly avail-
able annotated datasets for use in the context of online, stan-
dardized evaluations asynchronous competitions. In an asyn-
chronous competition, a subset of images is made available with
annotations, while the remainder of the images are available
with annotations withheld. This allows researchers to optimize
their algorithm performance on the population from which the
images were drawn (assuming the subset with annotated images
is representative of the entire population), but they are unable
to test–retest on the evaluation images, because those annota-
tions are withheld. All results are subsequently evaluated using
the same evaluation software and research groups are allowed
to submit results continuously over time. Nevertheless, some
groups may be tempted to artificially influence the performance
outcome for example by using human readers to assist with the
performance of their algorithm, or iteratively improving the per-
formance by submitting multiple results serially and using the
obtained performance differences to tune-up their algorithms.

More recently, the concept of synchronous competitions was
born, for which a deadline is given for submitting analysis re-
sults with competition results announced at a single moment in
time. The most well-known example of such an approach is the
Netflix competition [104]. These kinds of joint evaluations on
a common dataset have the potential to steer future research by
showing the failure modes of certain techniques and guide the
practical application of techniques in the clinical practice, es-
pecially if appropriate reward mechanisms are available (again,
the highly successful Netflix competition may serve as a moti-
vational example).

The first Retinopathy Online Challenge competition [105] fo-
cused on detection of microaneurysms and was organized in
2009. Twenty-six groups participated in the competition out of
which six groups submitted their results on time, as published in
[97]. One group decided to drop out of the competition after the
results were announced, and the remainder allowed their perfor-

mance to be discussed publicly [89], [106]–[108]. The results
from each of the methods in this competition are summarized in
Table I.

ROC-2009 Datasets: A set of 100 digital color fundus pho-
tographs were selected from a large dataset of over 150 000 im-
ages, acquired during diabetic retinopathy screening [59]. The
inclusion criteria were that the screening program ophthalmol-
ogist had marked the image as containing microaneurysms and
did not mark it as ungradable. Since multiple screening sites
utilizing different fundus camera types were involved in the
screening program, the images in the ROC-2009 set are quite
heterogeneous. Three different sizes of field of view (FOV) are
present in the dataset, each corresponding to different image res-
olution. The images were captured using either Topcon NW 100,
Topcon NW 200, or Canon CR5-45NM camera, resulting in
two differently shaped FOV’s. All images were made available
in JPEG format with standard image compression levels set in
the camera. Four retinal experts annotated all microaneurysms
as well as all “don’t care” lesions in the 100 images. For the
training set, a logical OR was used to combine the lesion lo-
cations annotated by the four experts—thus ensuring that the
reference dataset was highly sensitive to lesions, as it required
only one retinal expert to identify a lesion. The annotations were
exported as a file in XML format that contained the center lo-
cations for all microaneurysms and all “don’t care” lesions in
each image of the set.

E. Optic Nerve Head Analysis From Fundus Images

Glaucoma is the third leading cause of blindness in the U.S.,
characterized by gradual damage to the optic nerve and resul-
tant visual field loss. Early diagnosis and optimal treatment have
been shown to minimize the risk of visual loss due to glau-
coma. The hallmark of glaucomatous progression is cupping
of the optic nerve head. One way of determining the amount
of cupping is planimetry by experienced glaucoma specialists
from stereo color photographs of the optic nerve head. Pixel
feature classification is an attractive technique to detect the cup
and rim in stereo color photographs, as shown in the following
paragraphs.

1) Pattern Recognition Approach to ONH Segmentation:
Stereo photographs of the optic disc (cropped from 4096
4096 pixel resolution to 512 512, centered at the optic
nerve head) were used to form a reference standard via manual
planimetry of the stereo pairs, labeling each image pixel as
one of cup, rim, and background in a majority-win manner
according to the labeling of three expert glaucoma specialists
(Fig. 15). In the case of a draw, the pixel was assigned to the
background class [110].
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Fig. 15. Annotations of optic disc stereo pair by three expert glaucoma specialists. Note substantial inter-observer variability. ONH rim is shown in grayish and
cup in whitish overlay on left image of stereo pair. Rightmost panel D shows a reference standard that was created from expert analyses A, B, C by majority voting
with white color representing cup, gray color denoting rim, and black color corresponding to background.

As mentioned in Section IV-A, pixel intensity and simple
edge operators can be used to generate local image features.
Considering spatial context, a Gaussian filter bank can be used
to generate a large number of (sometimes correlated) features,
from which an optimal feature combination can be identified
using a formal feature selection process. Gaussian filter bank
features are designed to be sensitive to edges and textures at
different scales and orientations and are usually applied to gray-
level image data (Fig. 16). To incorporate the color information
that is inherently present in the fundus photographs, additional
color-sensitive features can result from a Gaussian steerable
filter bank applied to the hue, saturation, and brightness image
representations together with assessing signal variance in the R,
G, and B channels in small neighborhoods. Such features are
obviously different from the color opponency model of primate
color vision. Color opponency intensities, for dark-bright, red-
green and blue-yellow opponency, that are substantially closer
to primate color vision color opponency processing can be com-
puted from each color image as follows [111]:

(5)

(6)

(7)

where are the red, green and blue channels of the
analyzed image of the stereo pair. are then each
convolved with the respective Gaussian derivatives to obtain the
Gaussian derivative-related features in the opponency space.

When employing the above-described Gaussian steerable
filter bank in dark-bright, red-green, and blue-yellow center-sur-
round color opponency images, a performance improvement
was achieved [110].

After feature selection and training, the selected image fea-
tures were classified by -NN and support-vector machine clas-
sifiers, yielding probability maps of pixel labeling of cup, rim, or
background. The approach that was presented in detail in [110]
achieved three-class segmentation (labeling) correctness of 88%.
Fig. 17 shows how the gradings by glaucoma specialists, glau-
coma fellows, and the algorithm visually compare to each other.
Correlations of the calculated cup to disc ratios with the reference
standard was (95% CI, 0.89–0.96, ).

Fig. 16. Color opponency steerable Gaussian filter bank kernel examples. First
row, from left to right shows dark-bright opponency kernels for 0th order, first-
order 0 to local gradient, first-order 90 to local gradient, second-order 0 to
local gradient, second-order 60 to local gradient, and second-order 120 to
local gradient, at a scale of 32 pixels. Second row, same for scale of 64 pixels,
and third row for scale of 128 pixels. Next three rows show identical information
for blue-yellow opponency kernels, and last three rows show red-green kernels.
Smaller scales not shown because they are difficult to depict. These kernel im-
ages represent responses of each of feature detectors to an impulse function.
Note that true kernel colors are shown.

The ONH segmentation performance clearly indicated that
pixel feature classification with biologically inspired features
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derived from color fundus images is a good starting point for the
classification of the optic nerve head and likely also other 3-D
structures of the retina. Importantly, it was shown that features
benefiting from the understanding to the physiologic vision
process outperform standard pixel features when segmenting
the optic nerve head.

2) Three-Dimensional Reconstruction of ONH Shape From
Stereo Color Fundus Photographs: Clinicians have used stereo
color fundus images of the optic disc for many decades. Three-
dimensional shape of the optic nerve head provides the visible
manifestation of optic nerve damage. To allow objective and
quantitative analysis of the ONH, several groups have developed
techniques to estimate its 3-D shape using stereo fundus images
[112]. Estimation of 3-D shape from stereo images has been
performed for decades [113]. By measuring the relative position
differences or disparity of one or more corresponding patches
or regions in the two stereo images, the underlying shape can be
estimated [114].

The problem of identification of correspondences is usually
solved by making a number of assumptions, such as that of
the Lambertian reflectance, which assumes that image intensi-
ties of the same 3-D point are identical regardless of the view
angle variations. Another commonly used assumption is that
the 3-D surface is fronto-parallel to both image planes within
a local neighborhood. Problems arise when these assumptions
are violated. Consequently, the same 3-D point or patch may
not have the exact same appearance due to depth variation rel-
ative to its surroundings and due to the different view angles.
Repetitive patterns or lack of distinct features produce matching
ambiguities.

In contrast to computational processes deriving shape from
stereo images of natural scenes, images of the eye often have
low contrast and high noise caused by safety-based limitations
on the amount of illumination that can be used. The images
thus consist of low contrast regions without clear boundaries.
Large imaging apertures can gather more light but simultane-
ously suffer from a small depth of focus. As a consequence,
depth variations may cause different degrees of blur due to de-
focusing of the camera. Similarly, an increase of exposure time
may incur blur due to the motion of the eye.

The shape estimate of the optic disc is formed from two sets
of densely corresponding pixels and from the
stereo fundus images and , taken from two different view
angles while simultaneously imaging the same eye (Fig. 18).
The two image planes are horizontally displaced in a typical
camera configuration. The horizontal disparity of a pair of cor-
respondences is inversely proportional to the depth
of the associated 3-D point. Given the correspondences between
the image point pairs, the disparity map is defined
as a 2-D matrix satisfying

(8)

where image is usually referred to as the reference image
and image the matching image. The disparity map con-
tains depth information about the observed structure. If the dis-
parity map of a pair of fundus images is found by dense-

matching and plotted as a 3-D surface, the shape of the optic disc
is recovered.

For stereo fundus images with slowly varying texture, it is
easier to associate a pair of globally matching regions since
more prominent landmarks can be utilized, such as blood vessels
and the optic disc. On the other hand, given a limited number
of candidate correspondences and the deformations in order to
achieve correct matches between such landmarks, detailed local
information is frequently sufficient and more reliable to dis-
cern subtle differences among these candidates. This motivates
a scale-space-based framework described as follows.

Scale space consists of image evolutions with the
scale representing a third dimension. Given a pair of images

and , a disparity map is es-
timated at scale and then upscaled to , which
matches the stereo pair and at the
higher scale . With constraints imposed by ,
the disparity map evolves to the finer scale while
at each scale, certain features are selected as the salient ones.

The scale-space-based representation of the image structure
is intended to provide globally coherent solutions for the corre-
spondence problem. Stereo images at different scales provide
hierarchical features for correspondence identification while
disparity maps along the scale dimension provide structure
description in terms of point evolution paths and act as the
regularization component. Constraints enforced by landmarks
at a certain scale guide finer searches toward correct directions
along those paths while the small additive noise is filtered out
by a 2-D adaptive noise-removing Wiener filter, which can
preserve depth edges during disparity evolution.

The matching process involves assigning one label (disparity
value) to each pixel in the reference image within a rather large
disparity range. The scale-space-based approach essentially dis-
tributes this task to different scales so that at each scale the
matching ambiguity is reduced significantly. This is important
for noisy stereo fundus pairs with low texture density. The for-
mulation is consistent with the perceptual grouping performed
by the human visual system.

The described approach to reconstruct ONH surface shape
was evaluated on 30 pairs of stereo fundus images in comparison
with ONH surface shapes derived from 3-D OCT imaging of the
same subjects—OCT analysis was performed as described in
Section V-D. The accuracy of each disparity map was measured
by the root of mean squared (RMS) differences between
the estimate derived from stereo fundus photographs and
the depth information obtained from OCT scans as

(9)

where is the total number of pixels. Both depth maps (stereo-
fundus and OCT derived) were normalized to the same scale
according to the depth of the cup and the OCT-derived surface
served as the independent standard. In this relative manner, the
average RMS error of the stereo-fundus surface reconstruction
was 15.9 8.8% of the cup depth when assessed over all 30
analyzed stereo fundus pairs (Fig. 19).
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Fig. 17. Classification of stereo pairs (left two columns) by glaucoma specialists (third column), three glaucoma fellows (columns 4–6), and automated pixel
feature classification (right-most column). Rows from top to bottom: Small, medium, large disc excavation, and excavation with inferior notching.

F. Active Areas of Research in Fundus Image Analysis

Major progress has been accomplished in many fundus image
analysis tasks mentioned above. Current challenges, on which
multiple research groups worldwide are actively working, in-
clude the following areas:

1) Retinal blood vessels:
a) vessel segmentation for smaller vessels only a few

pixels in diameter;
b) vessel segmentation in images with substantial

pathology;
c) differentiating arteries from veins;
d) assessing accurate vessel diameter;
e) assessing vessel tortuosity;
f) vessel tree analysis including tree branching patterns.

2) Retinal lesions:
a) detection of irregularly shaped hemorrhages;
b) detection of rare but major pathology such as neo-

plasms and scarring;
c) detection of lesion distribution patterns, for example

drusen;
d) segmentation of atrophy, including geographic

atrophy;
e) fast analysis allowing real time feedback.

3) Content-based image retrieval for abnormality detection;
4) Change over time detection for abnormality assessment;
5) Integration of fundus image-based quantification with

other metrics of disease risk, such as serum glucose level,
patient history, etc.

V. OCT IMAGE ANALYSIS

Because of OCT’s relatively new presence in ophthalmic
care compared to fundus photography, the use of image anal-
ysis techniques for the use of image analysis for processing
OCT images has a shorter history. Nevertheless, it is a rapidly
growing and important area, especially as spectral-domain OCT
technology has enabled true 3-D volumetric scans of the retina
to be acquired (see Fig. 20 for example scanning locations).
With this ever-increasing wealth of image information, the
importance of developing advanced image analysis techniques
to maximize the clinically relevant information to be extracted
is especially important. Nevertheless, the development of such
advanced techniques can be challenging as OCT images are
inherently noisy, thus often requiring the utilization of 3-D
contextual information (Fig. 22). Furthermore, the structure of
the retina can drastically change during disease (as illustrated
in Figs. 27, 29, and 30). Here, we review some of the important
image analysis areas for processing OCT images. We start
with the segmentation of retinal layers (Section V-A1), one of
the earliest, yet still extremely important, OCT image analysis
areas. We then discuss techniques for flattening OCT images
in order to correct scanning artifacts (Section V-A2). Building
upon the ability to extract layers, we discuss use of thickness
information in Section V-A3 and use of texture information
in Section V-A4. This is followed by the segmentation of
retinal vessels (Section V-B), which currently has its technical
basis in many of the techniques used for segmenting vessels
in fundus photography, but is beginning to take advantage of
the 3-D information only available in SD-OCT. Utilizing both
layer-based and texture-based properties to detect the locations
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Fig. 18. Two examples of 3-D ONH surface reconstruction obtained from a stereo fundus pair and from 3-D OCT scan shown in two rows. From left to right
(both rows): left and right fundus image centered at the optic disc. Shape estimate of optic nerve head surface represented as grayscale depth maps derived from
OCT scan. Reference (left) image shown to correspond to OCT scan view. Shape estimate of optic nerve surface represented as grayscale depth maps derived from
stereo fundus pair analysis. Reference (left) image shown to correspond to output from stereo fundus pair reconstruction.

Fig. 19. Example of 3-D agreement between stereo-fundus-photography-de-
rived (lower surface) and OCT-derived (upper surface, smoothed) 3-D recon-
structions of ONH shape.

Fig. 20. Typical scanning locations (illustrated on center fundus photograph)
of spectral-domain OCT scanning system: Macular volumetric scans (left, in
yellow) which are centered on macula, and peripapillary volumetric scans (right,
in green) which are centered on optic nerve head.

of retinal lesions is described in Sections V-C and V-C1, with
a 3-D-based approach for segmenting the boundaries of such
lesions being described in Section V-C2. The ability to segment
layers in the presence of lesions is described in Section V-C3.
We finally describe approaches for segmenting structures of the
optic nerve head in SD-OCT in Section V-D.

A. Retinal Layer Analysis From 3-D OCT

1) Retinal Layer Detection: The segmentation of retinal
layers in OCT scans has been an important goal since OCT’s

availability to the ophthalmic community [36] as thickness
changes in the layers are one indication of disease status
(Section V-A3). An example of the visible layers in one slice
from a spectral-domain OCT macular volume is given in
Fig. 21. With the previous-generation time-domain scanning
systems (such as the Stratus OCT by Carl Zeiss Meditec, Inc.),
commercial systems offered the ability to segment and provide
thickness measurements for one layer of the retina. In particular,
the retinal nerve fiber layer (RNFL) thickness measurements of
peripapillary circular scans were frequently used for the disease
status/progression/regression assessment in glaucoma patients,
while the total retinal thickness measurements were often used
in the assessment of patients with macular edema, choroidal
neovascularization and macular hole. While the proprietary
details of commercial approaches are not known, it can be
assumed that they utilized an inherently 2-D approach (i.e.,
if multiple 2-D slices are available in a particular scanning
sequence they are segmented independently).

Similarly, most of the early approaches reported in the
literature [115]–[121] for the segmentation of time-domain
scans were two dimensions in nature; however, some of the
approaches did move towards segmenting additional layers of
the retina. While variations to each of the early 2-D approaches
exist for the segmentation of retinal boundaries, a typical 2-D
approach proceeds as follows.

1) Preprocess the image (e.g., with a median filter as in
[115]–[118] or anisotropic diffusion filter as in [120]).

2) Perform a 1-D peak detection algorithm on each A-scan
(column) of the processed image to find points on each
border of interest.

3) (For only a few approaches) Process the points further to
correct for possible discontinuities in the 1-D border de-
tection approaches (e.g., use Markov modeling to connect
smaller segments to the largest continuous segment fol-
lowed by spline-fit as in [115], [116]).

Other 2-D time-domain approaches included the use of 2-D dy-
namic programming by Baroni et al. [122] and manually ini-
tialized deformable models for the segmentation of fluid-filled
regions by Cabrera Fernández [119]. These segmentation ap-
proaches have attempted to find different numbers of boundaries
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Fig. 21. Segmentation results of 11 retinal surfaces (ten layers). (a) X-Z image of OCT volume. (b) Segmentation results, nerve fiber layer (NFL), ganglion cell
layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL) + inner segments (IS), outer segments
(OS), and retinal pigment epithelium complex (RPE+). Stated anatomical labeling is based on observed relationships with histology although no general agreement
exists among experts about precise correspondence of some layers, especially outermost layers. (c) Three-dimensional rendering of segmented surfaces (N: nasal,
T: temporal).

of the retina. In particular, Koozekanani et al. [115], [116] found
two boundaries, Baroni et al. [122] found three, Shahidi et al.
found four [121], Ishikawa et al. [117], [118] found five, and
Cabrera Fernández found seven retinal layer boundaries [120].

Haeker/Garvin et al. [123]–[126] reported the first true 3-D
segmentation approach for the segmentation of retinal layers on
OCT scans, thus taking advantage of 3-D contextual informa-
tion. In addition to segmenting the layers in three dimensions,
their approach was unique in that the layers could be segmented
simultaneously [127]. The approach involved the construction
of a graph such that the minimum-cost closed set of this graph
would correspond to a set of optimal feasible surfaces. Feasi-
bility was defined by smoothness constraints (i.e., not allowing
neighboring surface points to be too far apart) and surface inter-
action constraints (i.e., requiring the distances between surfaces
to be in a particular range). Their initially reported approaches
utilized edge-based cost functions and constant feasibility con-
straints [123], [126], but they later extended the graph-based ap-
proach to allow for true regional information [125] and varying
feasibility constraints [124]. For time-domain macular scans,
they segmented six to seven surfaces (five to six layers), ob-

taining an accuracy and reproducibility similar to that of retinal
specialists.

This work was then extended to work with spectral-do-
main OCT volumes [128], making the utilization of 3-D
contextual information more advantageous. The importance
of 3-D contextual information is illustrated in Fig. 22. The
originally published method was validated on repeated scans
from macula-centered SD-OCT volumes of normal subjects
and did suffer from relatively long processing times of hours
per volume. The processing time has substantially decreased
by employing a multiscale approach to a few minutes while
segmenting additional layers (Fig. 21) [129]. A similar ap-
proach for segmenting the intraretinal layers in ONH-centered
SD-OCT volumes was reported with an accuracy similar to that
of the inter-observer variability of two human experts [130].
Based on their graph-theoretic approach, a preliminary layer
thickness atlas was built from a small set of normal subjects
[131] and unique layer changes were demonstrated in diabetes
subjects [132], [133].

Other reported approaches for the segmentation of spectral-
domain OCT volumes or slices include an interactive 3-D
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Fig. 22. Illustration of helpfulness in using 3-D contextual information in intraretinal layer segmentation process. (Top) Sequence of 2-D result on three adjacent
slices within spectral-domain volume obtained using a slice-by-slice 2-D graph-based approach. Note the “jump” in segmentation result for third and fourth surfaces
in middle slice. (Bottom) Sequence of 3-D result on same three adjacent slices using same graph-based approach, but with addition of 3-D contextual information.
Three-dimensional contextual information prevented third and fourth surface segmentation from failing.

approach by Fuller et al. [134], the 2-D segmentation of slices
from rodent images using an active contour approach by Yaz-
danpanah et al. [135], and the 2-D segmentation of slices from
rodent images using a dynamic programming method [136] by
Mishra et al. [137].

2) OCT Image Flattening: SD-OCT volumes frequently
demonstrate motion artifacts in the slow-scanning direction
causing a high-frequency ripple in this direction. Furthermore,
other artifacts may be present, such as the tilting due to an
off-axis placement of the pupil. Thus, various approaches have
been reported in an attempt to correct these artifacts. Common
approaches for reducing these artifacts include 1-D and 2-D
methods that use cross-correlation of either A-scans [117] or
B-scans [134], [138], [139]. In some cases, a complete flattening
of the volume is desired based on a surface segmentation to en-
sure a consistent shape for segmentation (to aid in learning shape
constraints) and visualization purposes. In addition, flattening
the volumes makes it possible to truncate the image substan-
tially in the axial direction ( -direction), thereby reducing the
memory and time-requirements of an intraretinal layer seg-
mentation approach. For example, in the approach by Garvin
et al. [128], flattening an image involved first segmenting the
retinal pigment epithelial surface in a lower resolution, fitting a
(regularized) thin-plate spline [140] to this surface, and then ver-
tically realigning the columns of the volume to make this surface
completely flat. However, in order to avoid a strong dependence
on the surface segmentation, a relatively large regularization
constraint was used. This had the side effect of not completely
removing many of the ripples observed in the slow-scanning
direction. In an effort to better reduce the ripples observed in the
slow-scanning direction, Antony et al. proposed a modification
of this approach [141] to separately address the distortions in
each direction using a two-stage flattening approach.

3) Retinal Layer Thickness Analysis: Once the layers are
segmented and flattened, the properties of the macular tissues

Fig. 23. Geometry of textural characterization of macula. Local textural or
thickness indices are extracted within intersection of region-defining columns
(typically with a rectangular support domain in � � � plane) with each seg-
mented intraretinal layer. Features computed in each of these intersections may
be used to define an abnormality index for ��� �� line at center of the column
when detecting macular lesions as described in Section V-C.

in each of these layers can be extracted and analyzed. Cur-
rently, the most common property analyzed is layer thickness,
although more recent work has been proposed for analyzing
textural properties as well (Section V-A4). For example, in
glaucoma, one can observe a thinning of the retinal nerve fiber
layer and ganglion cell layer [142]. In other ocular diseases,
thickening of specific layers can be important (e.g., macular
edema) [143]. Typically, it is useful to compare the obtained
thickness values to a normative database or atlas, as is available
in commercial machines for the total macular thickness and
the retinal nerve fiber layer. However, a normative atlas for
all the layers in three dimensions currently only exists within
individual research groups [131]. Nevertheless, work has been
done to demonstrate previously unknown changes in the layers
in other diseases such as diabetes [132], [133].
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Fig. 24. Example of spectral 3-D OCT vessel segmentation. (a) Vessel silhouettes indicate position of vasculature. Also indicated in red are slice intersections of
two surfaces that delineate subvolume in which vessels are segmented (superficial retinal layers toward vitreous are at the bottom). (b) Two-dimensional projection
image extracted from projected subvolume of spectral 3-D OCT volume. (c) Automatic vessel segmentation. (d) Vessel segmentation after postprocessing—re-
moving disconnected pieces and connecting large segments.

4) Retinal Texture Analysis: In addition to assessing layer
thickness and its variations, texture is well suited to characterize
tissue properties and tissue differences. For example, textural
properties may be important for assessing changes in the struc-
tural or tissue composition of layers that cannot be measured by
changes in thickness alone. Using texture can also be helpful for
detecting and segmenting structures involving changes in tex-
ture, such as retinal lesions (Section V-C). Texture can be deter-
mined in each of the identified layers either globally or region-
ally. To capture the 3-D character of the retinal tissue layers, 3-D
texture analysis may include features describing intensity level
distribution, run length indices, co-occurrence matrix measures,
and wavelet analysis measures [144]–[146]. Three-dimensional
formulations of these texture descriptors were previously devel-
oped for pulmonary parenchymal analysis [147] and can be di-
rectly employed for OCT texture analysis [148].

The intensity level distribution measures may contain the
mean, variance, skewness, kurtosis, and gray level (intensity)
entropy and are used to describe the occurrence frequencies
of all intensity levels in a subvolume of interest. The run
length measures may include the short run emphasis, long run
emphasis, gray level nonuniformity, run length nonuniformity,
and/or run percentage and describe the heterogeneity and tonal
distributions of the intensity levels in a subvolume of interest.
Frequently utilized for texture characterization, co-occurrence
matrix measures like the angular second moment, correlation,
contrast, entropy, inertia, and inverse difference moment de-
scribe the overall spatial relationships that the intensity tones
have to each other, again calculated in a subvolume of interest.
Run length and co-occurrence analyses both require quanti-
fying voxel intensities in the OCT images. That is obvious for
run length measures because the concept of uniform intensity
sequences is ill-defined without quantification in the presence
of noise, in particular the laser speckle. The gray-level intensi-
ties are typically quantified in equally populated bins [148].

The wavelet transform has been widely used in OCT images
for denoising and despeckling [149]–[151] as well as for tex-
ture analysis [152]. Early work on 3-D wavelet analysis of OCT
images was reported in [148] and was based on a computa-
tionally efficient yet flexible non-separable lifting scheme in ar-
bitrary dimensions [153]. An adaptive implementation of this

wavelet transform has previously been applied to 2-D texture
retrieval [146].

For some of the textural features described above (run length,
co-occurrence matrix and wavelet indices), features are com-
puted along all main directions. In order to reduce the cardi-
nality of the textural characterization, these values are often av-
eraged to form directionless scalar features [145]. Additional
(not strictly texture-based but still useful) features can be com-
puted, e.g., the averages and standard deviations of layer thick-
nesses, globally or regionally.

When assessing regional texture features, texture analysis
can be performed in individual (flattened) layer-specific sub-
volumes, for example with a square base domain of
centered at an location. Texture characteristics can be
computed for each segmented layer, several adjacent layers,
or in layer combinations. Fig. 23 shows a schematic view of
calculating regional texture indices.

B. Detection of Retinal Vessels From 3-D OCT

While perhaps not obvious from observing a single 2-D slice
(B-scan), it is possible to segment the retinal vasculature in 3-D
SD-OCT volumes [154]–[156], which, among other uses, helps
to enable the OCT-to-fundus and OCT-to-OCT image registra-
tion (Section VI). The absorption of light by the blood vessel
walls causes vessel silhouettes to appear below the position of
vessels, which thus causes the projected vessel positions to ap-
pear dark on either a full projection image of the entire volume
[156] or a projection image from a segmented layer for which
the contrast between the vascular silhouettes and background is
highest as proposed by Niemeijer et al. [154], [155]. In partic-
ular, the work by Niemeijer et al. used the layer near the retinal
pigment epithelium (RPE) to create the projection image, as il-
lustrated in Fig. 24(a) and (b). Vessels were segmented using a
k-NN pixel classification approach using Gaussian filter banks
to compute features [see Fig. 24(c) and (d)]. The performance
of their automated method was evaluated for both optic nerve
head (ONH) centered as well as macula-centered scans. The
retinal vessels were successfully identified in a set of 16 3-D
OCT volumes (eight ONH and eight macula centered) with high
sensitivity and specificity as determined using ROC analysis,

.
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Fig. 25. Example 3-D vasculature segmentation result from OCT volumetric
scan [158].

Xu et al. reported an approach for segmenting the projected
locations of the vasculature by utilizing pixel classification of
A-scans [156]. The features used in the pixel classification are
based on a projection image of the entire volume in combination
with features of the individual A-scans.

Both of these reported prior approaches focused on seg-
menting the vessels in the region outside the optic disc region
because of difficulties in the segmentation inside this region. For
example, the projected neural canal opening (NCO) can often
share similar features with vessels, thus causing false positives.
Thus, Hu et al. [157] proposed a modified 2-D pixel classi-
fication algorithm to segment the blood vessels in SD-OCT
volumes centered at the ONH, with a special focus on better
identifying vessels near the NCO. They approached this task
by incorporating presegmented NCO location (Section V-D2)
information into the classification process, achieving a signif-
icant improvement over the approach previously reported by
Niemeijer et al. in the NCO region.

Given an initial 2-D segmentation of the projected vascula-
ture, Lee et al. presented an approach for segmenting the 3-D
vasculature in the volumetric scans [158] by utilizing a graph-
theoretic approach (Fig. 25). However, one of current limitations
of that approach is the inability to properly resolve the depth in-
formation of crossing vessels.

C. Detection of Retinal Lesions

Calculated texture and layer-based properties as described
in Section V-A4 can be used to detect retinal lesions either as
a 2-D footprint [148] or in three dimensions (Section V-C2).
Out of many kinds of possible retinal lesions, symptomatic ex-
udate-associated derangements (SEADs) are of utmost interest
in assessing severity of age-related macular degeneration, dia-
betic macular edema, and other diseases. Detection of drusen,
cottonwool spots, areas of pigment epithelial atrophy, pockets
of fluid under epiretinal membranes, etc., may be attempted in
a similar fashion.

In all such applications, it is very useful to determine the
normal appearance of maculae so that comparison of tissue
properties with proper consideration of age, ethnicity, gender,
etc., can be performed. Such a normative texture atlas can
be derived from a set of OCT volumes from normal eyes.
The distribution of each texture or other layer-based feature
across these volumes, in the neighborhood of an line

Fig. 26. Normal appearance of three intraretinal layers (NFL, INL and OS, see
Fig. 21) in feature space optimized for SEAD footprint detection. For each fea-
ture, a map of the average (standard deviation) of feature values across macula
is displayed on left (right). Inertia (b) is correlated with thickness of layer (d).
Note that standard deviations of wavelet coefficients (c) and entropy (e) are
almost uniform (black) across macula in normal eyes. (a) Average intensity;
(b) inertia (co-occurrence matrix); (c) standard deviation wavelet coefficients
(level 1); (d) layer thickness; (e) entropy (co-occurrence matrix).

(i.e., a vertical column) within the th layer, may be defined by
the average and the standard deviation of the

feature values (one feature value per OCT volume). This
representation is convenient since the local deviation
between the feature value computed for a new sample
and the normality can be expressed in terms of -score

(10)

Because the local distribution of a feature in one layer of the
macula is defined by only two parameters (mean, standard devi-
ation), the normal appearance of maculae as defined above can
be derived from a relatively small set of images. More compre-
hensive atlases may include feature histograms and histogram-
based statistical distances, but these require larger datasets to
be built. Examples of calculated texture indices and their dis-
tributions over macula in 13 normal subjects—thus forming a
normative pilot atlas of macular texture properties—are given
in Fig. 26. These “normal atlas” values can be used for abnor-
mality detection as described in the following.

Deviations From Normal Atlas of Texture Appearance: A
straightforward solution to detect retinal image abnormalities
may be based on computing the local deviations from the normal
appearance of maculae at each location in each layer
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and selecting the areas where the absolute deviation is greater
than a predefined cutoff (e.g., considering the
95% confidence level) for at least one feature. More generally, in
order to build an abnormality-specific detector, a classifier can
be trained, the inputs of which may be the -scores computed
for relevant features [see (10)]. The comprehensive -scores are
appropriate since an abnormality may affect several layers in
the neighborhood of a given location . The classifier-de-
termined label associated with each column may reflect the per-
centage of the patch covered by the target abnormality with rel-
evant features selected by one of the many available cross-vali-
dation and/or feature selection methods [159]–[161], effectively
forming a probabilistic abnormality map.

A crisp binary footprint for macular lesions (say, SEADs)
can thus be obtained directly from a probability map, e.g., by
simple probability thresholding, yielding lesion footprints. Of
course, training can result in more sophisticated ways to classify
abnormalities. For example, the threshold can be determined so
that it minimizes the L1 distance between the expert-defined
independent standard for lesion footprints and the thresholded
probability maps among all the images in the training dataset.

1) SEAD Footprint Detection: In age-related macular degen-
eration, in diabetic macular edema, and in other retinal diseases,
SEAD lesions are reflective of disease status and their changes
of disease progression or regression. With the availability of
anti-vascular endothelial growth factor (VEGF) therapy, assess-
ment of the extent and morphology of individual SEADs is ex-
pected to contribute to patient-specific therapy.

While SEADs are inherently 3-D, determining their 2-D
retinal footprint (SEAD projection onto a coronal retinal plane)
is highly relevant. Following the above-described analysis
building blocks, SEAD footprint detection can be built on
generalization of properties derived from expert-defined SEAD
examples. Utilizing the differences between normal regional
appearance of retinal layers as described by texture descriptors
and other morphologic indices, a classifier can be trained to
identify abnormal retinal appearance. As described in detail in
[148], the SEAD detection starts with 3-D OCT layer segmen-
tation (Section V-A1) resulting in ten intraretinal layers plus an
additional artificial layer below the deepest intraretinal layer so
that subretinal abnormalities can also be detected.

Texture-based and morphologic descriptors are calculated
regionally in rectangular subvolumes, the most discriminative
descriptors are identified, and these descriptors are used for
training a probabilistic classifier. The performance of a (set
of) feature(s) is assessed by calculating the area under the
receiver-operating characteristic curve of the SEAD classifier.
The parameter of the ROC curve is the SEAD probability
measured for OCT columns with an square base from the
inner validation set (per-patch AUC). Using the identified set of
best features evaluated in OCT columns with an square
base from the inner validation set (per-patch AUC), a forward
feature selection procedure is performed, in which features are
sequentially selected until the AUC stops increasing. At each
step, the feature maximizing the AUC increase is selected.
All the feature vectors extracted from nonoverlapping
patches in the inner training set are used as reference samples
by the k-NN classifier; their labels are derived from the expert

Fig. 27. Example of SEAD footprint detection. Panel (a) presents an ��� slice
running through SEADs in SD-OCT volume. Expert standards for footprint of
these SEADs and automatically generated SEAD footprint probability map, in
� � � plane, are presented in panels (b) and (c), respectively. Note probability
scale in panel (c). Projection of � � � slice in � � � plane is represented by a
vertical line in (b) and (c). Location of SEADs visible in panel (a) are indicated
by vertical lines in each panel.

standard. Overlapping patches from the OCT volumes
in the validation eye are then classified and the SEAD proba-
bility in each pixel is defined as the average probability
of all the patches containing [84]. The cross-validation
training/testing procedure is repeated for several patch sizes:

.
Once the probabilistic classifier is trained, SEAD-related

probability is determined for each retinal location. In order to
obtain a binary footprint for SEADs in an image input to the
system, the probability map is thresholded and the footprint of
the SEADs in this image defined as the set of all pixels with
a probability greater than a threshold (Fig. 27). The threshold
that minimizes the L1 distance between the expert standard for
SEAD footprints and the thresholded probability maps among
all the images in the reference dataset is selected (as outlined
above).

This approach was applied to determine SEAD footprints in
78 SD-OCT volumes from 23 repeatedly imaged patients with
choroidal neovascularization, intra-, and sub-retinal fluid and
pigment epithelial detachment (Fig. 28) [148]. The automated
SEAD footprint detection method was validated against an inde-
pendent standard obtained using an interactive 3-D SEAD seg-
mentation approach. An area under the ROC curve of 0.961
0.012 was obtained for the classification of vertical, cross-layer,
macular columns. A study performed on 12 pairs of OCT vol-
umes obtained from the same eye on the same day showed that
the repeatability of the automated method was comparable to
that of the human experts, demonstrating that useful 3-D tex-
tural information can be extracted from SD-OCT scans and—to-
gether with an anatomical atlas of normal retinas—can be used
for clinically important applications.
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Fig. 28. Repeatability study—two scans from same eye were acquired on same day at close temporal intervals. For each panel (a), (b), upper row shows binary
SEAD footprint representing independent standard. Lower row shows SEAD footprints obtained by our automated method, gray levels represent probability of
the point belonging to SEAD footprint; probability scale is provided in Fig. 27(c). These probabilities were thresholded to arrive at a binary segmentation. When
varying threshold levels, obtained performance yields ROC curves discussed in text. (a) First scan and (b) second scan.

Fig. 29. SEAD segmentation from 3-D OCT and SEAD development over time: top row: 0, 28, and 77 days after first imaging visit. Middle row: 0 and 42 days
after first imaging visit. Bottom row: 0, 14, and 28 days after first imaging visit. Three-dimensional visualization in right column shows data from week 0. Each
imaging session was associated with anti-VEGF reinjection.

2) SEAD Segmentation in Three Dimensions: Complete vol-
umetric segmentation of SEADs from 3-D OCT is more difficult
with no fully tested and robust methods existing at this time. A
promising approach is based on identification of a seed point in
the OCT dataset that is “inside” of a SEAD and a point “out-
side” of a SEAD. These seed points can be identified automati-
cally from using a 3-D variant of the probabilistic classification
approach outlined in the previous paragraphs. Once these two
seed points are identified, an automated segmentation procedure
that is based on regional graph-cut method [162], [163] may
be employed to detect the SEAD volumetric region. The cost
function utilized in a preliminary study was designed to iden-
tify darkish 3-D regions with somewhat homogeneous appear-
ance. The desired properties of the SEAD region are automat-
ically learned from the vicinity of the identified SEAD-region

seed point. This adaptive behavior allows the same graph-cut
segmentation method driven by the same cost function to reli-
ably segment SEADs of different appearance. Fig. 29 gives an
example of 3-D SEAD segmentations obtained using this ap-
proach. Note that the figure depicts the same locations in the 3-D
data sets imaged several times in the course of anti-VEGF treat-
ment. The surfaces of the segmented SEADs are represented
by a 3-D mesh, which can be interactively edited to maximize
SEAD segmentation accuracy in difficult or ambiguous cases.

3) Intraretinal Layer Segmentation in Presence of Retinal Le-
sions: To consider layer abnormalities and interruptions when
segmenting multiple intraretinal layers in retinal OCT images
in the presence of lesions (say, SEADs), a two-step approach
is necessary in which layers are initially segmented not con-
sidering the lesion presence, then SEADs are segmented as de-
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Fig. 30. Automated intraretinal layer segmentation approach in presence of SEADs. (a), (b) Zeiss Cirrus OCT image data—two perpendicular slices from 3-D
volume. (c), (d) Automated layer/SEAD segmentation. (e) SEAD and layers in three dimensions.

scribed in Section V-C2, and the segmented SEADs are used
in the subsequent step to constrain the second stage of layer
segmentation. This process yields well-segmented retinal layers
(Fig. 30) when SEADs occupy a single intra-retinal layer as
well as in situations when the SEAD resides in several adjacent
retinal layers.

D. Optic Nerve Head Analysis Using 3-D OCT

As mentioned previously (Section IV-E), the optic nerve head
is an important structure in the assessment of ophthalmic dis-
eases, such as glaucoma. While stereo fundus photography pro-
vides the ability to extract some 3-D shape information of the
optic nerve head (Section IV-E2), SD-OCT provides true 3-D
information. Nevertheless, what 3-D structural information to
be extracted from these 3-D volumes of the optic nerve head is
still an active area of research. Thus, most current approaches
have their basis in known 2-D parameters, such as the optic
disc and cup as can be visualized/segmented from stereo fundus
photography. In the following paragraphs, we describe two ap-
proaches for segmenting the disc/cup in optic-nerve head 3-D
OCT image data: 1) a pixel classification approach applied to
depth-columns of OCT voxels in which the reference standard is
defined by manual planimetry from stereo fundus photographs
[164]–[166], and 2) direct segmentation of structures (neural
canal opening and cup) from 3-D OCT images using a graph-
theoretic approach [167]–[170].

1) Classification-Based Approach to ONH Segmentation:
The classification-based approach starts by segmenting four
intraretinal surfaces in the original spectral-domain OCT
volume using a multiscale 3-D graph search-based method
(Section V-A1). To obtain a consistent ONH shape, the retina
in the original spectral-domain OCT volume is flattened by
adjusting A-scans up and down in the -direction using the
segmented second intraretinal surface (Section V-A2). An OCT
projection image is created by averaging in the -direction the
OCT subvolume between the second and fourth intraretinal
surfaces. The flattened OCT volume and intraretinal surface
segmentations, OCT projection image and vessel probability
map from the OCT projection image (Fig. 24) [154], [155] are
used as features for the classification of the optic disc cup and
neuroretinal rim. The optic disc cup and neuroretinal rim are
segmented by a contextual -NN classifier incorporating neigh-
boring A-scans. Finally, prior knowledge about the shapes of
the optic disc cup and neuroretinal rim regions is incorporated
through the application of convex hull-based fitting.

OCT Projection Image: An OCT projection image is nec-
essary for creating the ONH independent standard. The retinal
vasculature is visible in the projection image as described in
Section V-B and [154], [155]. Feature points derived from
the vasculature such as bifurcations can be used to register
the fundus image with the OCT volume (Section VI-B). The
projection image also serves for calculation of local features
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Fig. 31. Intraretinal surface segmentation. (a) Original ONH-centered OCT volume. (b) Smoothed OCT volume. (c) Intraretinal surface segmentation result
overlaid on original OCT volume. Search space for surfaces are constrained by previously segmented surfaces in multiresolution fashion. (d) Three-dimensional
rendering of four segmented intraretinal surfaces. Regions of surfaces 2, 3, and 4 around the optic nerve head were ignored since intraretinal surfaces are ambiguous
in these regions.

Fig. 32. Acquisition of ONH ground truth of spectral-domain OCT scan. (a) One of a pair of stereo color photographs. (b) Optic disc ground truth of (a), which is
manually segmented by glaucoma expert through planimetry on one (left) of the pair of stereo fundus photographs while viewing the pair through a stereo viewer.
Optic disc cup is in white, and neuroretinal rim is in gray. (c) OCT projection image. (d) Fundus photograph (panel a) registered onto OCT projection image (panel
c). (e) OCT projection image overlapped with ONH ground truth. Optic disc cup is in red, and neuroretinal rim is in green.

for the cup and rim classification of the OCT volume. The OCT
projection image is created by averaging in the -direction the
OCT subvolume between the second and fourth intraretinal sur-
faces segmented in Section V-A1 (surfaces 2 and 4, see Fig. 31).
These two surfaces define a layer that, due to its position in the
retina and high contrast with the retinal background, contains a
large number of high contrast vessel silhouettes [154], [155].

Optic Disc Cup and Neuroretinal Rim Segmentation: To
segment the optic disc cup and rim, a supervised classification
method assigns one of three labels (i.e., background, cup, rim)
to each A-scan (voxel column) in the 3-D OCT scan (Fig. 32).
Classification is based on a set of features obtained from flat-
tened OCT volumes and intraretinal surfaces, OCT projection
images and vessel probability maps [154], [155] for each voxel
column in the OCT volume.

Employed features include local morphologic properties of
retinal layers surrounding the ONH, including depth of the optic
disc cup, thickness of individual segmented layers, distance
from the center of the optic disc cup (defined as the lowest
point of the top segmented intraretinal surface), probability that
the voxel column is part of a vessel, OCT projection image
intensity, average intensity of all voxels in the voxel column,
and average voxel column intensity histogram. Following
feature-space normalization, a contextual nearest neighbor
classifier [171] is used. For each voxel column, the classifier

determines nearest neighbors in the feature space and assigns
the most common label amongst the nearest neighbors to the
query voxel column (Fig. 33) [165].

To preserve the shapes of the optic disc cup and neuroretinal
rim, a local fitting method using the convex hulls of the segmen-
tation is employed to smooth the segmentation results for both
the optic disc cup and neuroretinal rim. Figs. 33 and 34 demon-
strate the performance of this approach. Overall, the approach
reported in [165] achieved results not significantly different

from the inter-observer variability of expert-analysis
of the ONH cup and rim boundaries. In a leave-one-subject-out
experiment on 27 optic nerve head-centered OCT volumes (14
right eye scans and 13 left eye scans from 14 patients), the
unsigned errors for the optic disc cup and neuroretinal rim were
2.52 0.87 pixels (0.076 0.026 mm) and 2.04 0.86 pixels
(0.061 0.026 mm), respectively.

2) NCO-Approach to ONH Analysis: Using a voxel clas-
sification approach for automatically segmenting the clinical
familiar glaucomatous parameters—the ONH rim and cup—di-
rectly from the SD-OCT volumes as described [164]–[166] has
the ultimate limitation that the algorithm essentially mimics
the subjective assessment of 2-D parameters by human experts.
Since it is not based on objective, anatomical landmarks within
the 3-D volumes, the optic disc margin does not overlap with a
single constant anatomic structure in volumetric OCT. This is
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Fig. 33. Example of optic disc cup and neuroretinal rim segmentation. (a) OCT projection image. (b) Segmentation result using contextual �-NN classifier with
convex hull-based fitting. (c) OCT projection image overlapped with reference standard. Optic disc cup is in red, and neuroretinal rim is in green. (d) OCT projection
image overlapped with (b).

Fig. 34. Example of ONH segmentation performance [unsigned error for the optic disc cup � ���� pixels (0.038 mm) and unsigned error for the
neuroretinal rim � ���� pixels (0.026 mm)]. From top to bottom, left stereo color photograph, X-Z image at center of OCT volume and 3-D rendering of top
intraretinal surface mapped with left stereo color photograph. (a) Without any overlap. (b) Overlapped with result from contextual �-NN classifier with convex
hull-based fitting. Optic disc cup is in red and neuroretinal rim is in green. (c) Overlapped with reference standard. (d) Overlapped with manual segmentation
from second observer.

consistent with the recent comparisons of clinical and SD-OCT
optic disc margin anatomy by Strouthidis et al. [172], [173].
They found that the varying combinations of the termination
of Bruch’s membrane, border tissue, or the anterior scleral
canal opening may manifest as the 2-D disc margin seen on
photographs, depending upon the border tissue architecture and
anatomy.

With the wealth of volumetric information available from
SD-OCT, it is likely that better parameters can be obtained
for measuring glaucomatous change that move beyond what
is possible using stereo fundus photography alone. A central
requirement for the detection of the ONH structural change
is a longitudinally stable zero-reference plane. As described
by Strouthidis et al. [172], [173], the neural canal opening

(NCO)—the termination of Bruch’s membrane/retinal pigment
epithelium (BM/RPE) complex can serve as a basis for a stable
reference plane from which various optic nerve morphometric
parameters can be derived, based on the assumption that the
NCO is not likely to change substantially with glaucomatous
progression [172], [173].

Thus, new efforts are directed towards segmenting struc-
tures such as the NCO directly within SD-OCT volumes.
For example, Hu et al. [170] recently reported a method for
segmenting the NCO directly in SD-OCT volumes. Their
approach is based on first creating a projection image at the
level of the BM/RPE plane and then simultaneously detecting
the NCO and cup margins at the level of this plane using a
graph-theoretic approach. Using the disc margin as defined by
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Fig. 35. Example illustration of differences between structure-based segmen-
tation of NCO/cup on OCT, glaucoma expert definition of optic disc margin and
cup from manual planimetry, and pixel-classification-based segmentation of
disc/cup on OCT. From top to bottom: raw SD-OCT and corresponding fundus
image (top), structure-based (row 2), expert (on fundus photography) (row 3),
and pixel-classification-based (bottom) segmentations overlapping with raw
SD-OCT and corresponding fundus image. From left to right: SD-OCT central
B-scan (left) and fundus image (right). Yellow arrows indicate position of NCO
from algorithm (with dashed yellow line indicating projected NCO position).
Blue arrows indicate clinical disc margin from RS. Green and red colors
indicate each method’s projected rim and cup regions, respectively [170].

three glaucoma experts on stereo fundus photography as the
reference standard (RS), they found mean unsigned and signed
border differences of 2.81 1.48 pixels (0.084 0.044 mm)
and 0.99 2.02 pixels 0.030 0.061 mm , respectively.
The correlations of the linear cup-to-disc (NCO) area ratio, disc
(NCO) area, rim area, and cup area of the algorithm with the RS
were 0.85, 0.77, 0.69, and 0.83, respectively. However, it is im-
portant to note that it was not expected that the projected NCO
positions would perfectly correspond to the optic disc margin
as defined on manual planimetry, as illustrated in Fig. 35.

VI. MULTIMODALITY RETINAL IMAGING

Multimodality imaging is becoming increasingly common in
ophthalmology. For image information from multiple modali-
ties to be usable in mutual context, images must be registered so
that the independent information that was acquired by different
methods can be concatenated and form a multimodality descrip-
tion vector. Thus, because of its importance in enabling multi-
modal analysis, retinal image registration reflects another active

area of research. The several clinically used methods to image
the retina were introduced above and include fundus photog-
raphy, scanning laser ophthalmoscopy, fluorescence imaging,
and OCT. Additional retinal imaging techniques such as hyper-
spectral imaging, oxymetry, and adaptive optics SLO will bring
higher resolution.

To achieve a comprehensive description of retinal mor-
phology and eventually function, diverse retinal images
acquired by different or the same modalities at different time
instants must be mutually registered to spatially combine all
available local information. The following sections provide a
brief overview of fundus photography and OCT registration
approaches in both two and three dimensions. Registration of
retinal images from other existing and future imaging devices
can be performed in a similar or generally identical manner.

A. Registration of Fundus Retinal Photographs

Registration of fundus photographs taken either at different
regions of the retina, or of the same area of the retina but at
different times are useful to expand the effective field of view
of a retinal image, determine what part of the retina is being
viewed, or helps in analyzing changes over time [174]. We
have discussed some other uses for fundus–fundus registration
in Section IV-C devoted to retinal atlases.

To register (2-D, planar) fundus images, most existing
registration approaches utilize identification and extraction
of features derived from retinal vasculature segmented sep-
arately from the individual fundus images. The choice of a
specific image registration algorithm to align retinal images
into a montage depends on the image characteristics and the
application. Images acquired with only a small overlap may be
optimally aligned using feature-based registration approaches,
while images acquired with larger overlaps may be satisfac-
torily aligned using intensity-based approaches. Examples of
feature-based registration are global-to-local matching [175],
hierarchical model refinement [176], and dual-bootstrap [177].
Local intensity features [178] are particularly useful when an
insufficient number of vascular features are available.

Following a step of vascular skeletonization, vascular
branching points can be easily used as stable landmarks
for determining image-to-image correspondence [see
Fig. 36(a) and (b)]. As an example, the RADIC model [179]
parameters are estimated during an optimization step that uses
Powell’s method [180] and is driven by the vessel center line
distance (see also Section IV-C). The approach presented in
[181] reported registration accuracy of 1.72 0.04 pixels
(25–30 m, depending on resolution) when tested in 462 pairs
of green channel fundus images. The registration accuracy was
assessed as the vessel line error [see Fig. 36(c)]. The method
only needed two correspondence points to be reliably identified
and was therefore applicable even to cases when only a very
small overlap between the retinal image pairs existed. Based
on the identified vascular features, the general approach can
be applied to any retinal imaging modality for which a 2-D
vessel segmentation is available. Fig. 37 shows a wide-field of
view retinal image constructed from eight individual fundus
photographs.
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Fig. 36. Example of fundus retinal image registration. (a) Detail of two fundus images with detected vessel centerlines. (b) Identified vessel landmarks. (c) Ex-
ample registration result achieved on two overlapping fundus images.

Fig. 37. Retinal fundus image registration. Wide-angle fundus image is con-
structed by mutual registration of eight individual fundus photographs.

In registering poor quality multimodal fundus image pairs,
which may not have sufficient vessel-based features available,
Chen et al. proposed the detection of corner points using a Harris
detector followed by use of a partial intensity invariant feature
descriptor (PIIFD) [182]. They reported obtaining 89.9% “ac-
ceptable” registrations (defined as registrations with a median
error 1.5 pixels and a maximum error 10 pixels when com-
pared with ground truth correspondences) when tested on 168
pairs of multimodal retinal images.

B. Registration of OCT With Fundus Retinal Photographs

Registration of 2-D fundus images with inherently 3-D OCT
images requires that the dimensionality of OCT be reduced to
two dimensions via -axis projection. Building on the ability
to obtain vascular segmentation from 3-D OCT projection im-
ages (Section V-B), the problem of fundus-OCT registration
becomes virtually identical to that of fundus–fundus registra-
tion that was described in the previous section. Using the same
general method, high-quality OCT-fundus registration can be
achieved as demonstrated in Fig. 38. Fig. 39 presents the main
steps of the registration process and shows the achieved regis-
tration performance.

C. Mutual Registration of 3-D OCT Images

Temporal changes of retinal layers leading to assessment of
disease progression or regression can be accessed from longitu-
dinal OCT images. Similar to the cases discussed above, com-
parison of morphology or function over time requires that the
respective OCT image data sets be registered. Since OCT is a
3-D imaging modality, such registration needs to be performed
in three dimensions. For followup studies, image registration is
a vital tool to enable more precise, quantitative comparison of
disease status. Registration of time-domain and spectral-domain
OCT images for longitudinal analysis of RNFL thickness mea-
surement can be found in [183]. Another important aspect of
OCT to OCT registration is the ability to enlarge retinal cov-
erage by registering OCT data resulting from imaging different
portions of the retina.

A fully 3-D scale-invariant feature transform (SIFT)-based
approach was introduced in [184]. In their work, the SIFT fea-
ture extractor locates minima and maxima in the difference of
Gaussian scale space to identify salient feature points. Using
calculated histograms of local gradient directions around each
found extremum in three dimensions, the matching points are
found by comparing the distances between feature vectors. An
application of this approach to rigid registration of peripapillary
(ONH-centered) and macula-centered 3-D OCT scans of the
same patient for which the macular and peripapillary OCT scans
had only a limited overlap was reported in [184]. The work built
on a number of analysis steps introduced earlier, including seg-
mentation of the main retinal layers and 3-D flattening of each of
the two volumes to be registered (Section V-A2). Three-dimen-
sional SIFT feature points were subsequently determined as de-
scribed in [185]–[187]. Using the terminology usual for image
registration when one of the registered images is called source
(say the macular image) and the other target (say the peripapil-
lary image), the feature point detection is performed in both the
source and target images. After feature point extraction, those
which are in corresponding positions in both images are iden-
tified. In a typical pair of two OCT scans, about 70 matching
pairs can be found with a high level of certainty. Considering
the already flattened 3-D OCT image pair, the major remaining
deformations that need to be resolved are translation and lim-
ited rotation. Consequently, simple rigid or affine transform is
appropriate to achieve the desired image registration. The trans-
form parameters are estimated from the identified correspon-
dence points.
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Fig. 38. Registration of fundus images to 2-D OCT projection data. (a) Fundus camera image. (b) Two-dimensional projection (through depth dimension) of 3-D
OCT data. (c) Registered and blended fundus-OCT images via application of affine transformation model with three identified vascular landmarks.

Fig. 39. Step-by-step process of registering fundus images to 2-D OCT projection data of the same subject. (a) Color fundus image. (b) Vascular segmenta-
tion in fundus image. (c) OCT projection image. (d) Vascular segmentation in OCT projection image. (e) ONH area and ONH center detected in fundus image.
(f) Vascular center lines (blue) and bifurcations (red) in fundus image—bifurcations serve as prospective landmarks for which correspondence with OCT land-
marks is determined in the next step. (g) ONH area and ONH center detected in OCT projection image. (h) Vascular centerlines (blue) and bifurcations (red) in
OCT image—bifurcations serve as prospective landmarks for which correspondence with fundus landmarks is determined in the next step. (i) Highest reliability
OCT-fundus corresponding landmarks identified in fundus image. (j) Highest reliability OCT-fundus corresponding landmarks identified in OCT image. (k) Reg-
istered OCT-fundus image—quality of registration shown in checkerboard image. (l) Registered OCT-fundus image—averaging-based blending used to construct
image.

Fig. 40 demonstrates the functionality of such an approach
to OCT-OCT registration of macular and peripapillary OCT
scans [184], their 3-D registration achieved 3-D accuracy of
2.0 3.3 voxels, assessed as an average voxel distance error in
1572 matched locations. Qualitative evaluation of performance
demonstrated the utility of this approach to clinical-quality im-
ages. Temporal registration of longitudinally acquired OCT im-

ages from the same subjects can be obtained in an identical
manner.

VII. FUTURE OF RETINAL IMAGING AND IMAGE ANALYSIS

As we have seen, translation of research in imaging and image
analysis has been relatively rapid in the past and can be expected
to be rapid in the future. This is partially explained by the lower
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Fig. 40. Three-dimensional registration of macular and peripapillary OCT from the same subjects. Z-axis projection images of registered volumes are shown in
left column. Representative depth-axis slices from volumes are shown on right to demonstrate registration performance in three dimensions. Location of displayed
slice is indicated by a black line on registered projection images. Overlapping areas of scans are outlined by dashed rectangles to demonstrate that only relatively
small regions of overlap existed. Within these rectangular patches, image data from both OCT images are shown intermittently in a checkerboard pattern to illustrate
agreement of resulting registration. In projection images (same as in fundus photography), optic nerve head can be identified as a large dark region with vasculature
emanating from that region while fovea can be identified as a small dark region centrally located in nonvascular region of the registered image.

capital expenditure for ophthalmic imaging devices compared to
radiologic imaging devices, which can often be 10 to 100 times
more expensive. It is affected by the fact that ophthalmologists
manage patients directly and are also directly involved in the
ordering and interpreting of images, while radiologists typically
do not directly manage patients. The subtle difference in the
physician–patient relationship leads to a more direct coupling
between imaging innovation and clinical impact that is so well
visible in ophthalmic imaging and analysis.

Given that, it can be expected that translation of fundamental
research findings in ophthalmology will remain rapid in the fu-
ture. Realizing that the most rapid pace of medical imaging and
image analysis progress in generally is seen in two scenarios:
1) when the amount of data to be analyzed and interpreted by
a physician is excessively large and/or 2) when the analysis is
complex and requires quantitation and thus is not well matched
to the generally qualitative nature of human expert interpreta-
tion. Ophthalmologic applications and needs fall in both of these
categories and the need to computerize and automate the image
interpretation is correspondingly high.

We expect the highest impact to be associated with the fol-
lowing areas.

1) Cost-effective imaging and image analysis for wide scale
ophthalmic and/or systemic disease detection in a popu-
lation screening setting—this will likely be accomplished
by a quick retinal exam utilizing low-cost high-resolution
fundus imaging.

We expect that the move towards the quick retinal
exam—for example, through smart, portable, low-cost
cameras which have integrated image analysis—will
eventually make the assessment of the retina as simple,
patient friendly, cost-effective and uneventful as a blood
pressure check.

2) Management of complex ophthalmic diseases utilizing
image-guided treatment—that will be heavily dependent
on quantitative characteristics derived from fundus and
OCT image data and will consider multimodality and lon-
gitudinal image sequences as well as linkages to systemic
patient data.

We expect that image analysis and interpretation will be
coupled to genetic and other assessment indices allowing
truly personalized approaches to complex analyses of
broad sets of patient-specific data. On the technological
side, it will require and will thus lead to development
and wide utilization of highly automated techniques
for combined analysis of retinal image data in two,
three and four dimensions (3-D+time), identification
and quantitative assessment of temporal changes, in-
cluding the assessment of local and/or systemic severity
of the findings. On the patient-management side, it will
therefore lead to broad utilization of semi-automated,
clinician supervised management of retinal diseases, es-
pecially diabetic retinopathy, glaucoma, and choroidal
neovascularization.
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Overall, we envision that within the next decade, the uti-
lization of retinal imaging will go far beyond the direct needs
of ophthalmic disease management. We expect that the retinal
exam will become broadly used in systemic disease assessment
both for patient specific care and for population studies. The
unique ability of the eye to communicate the systemic status of
the human body will be much more broadly utilized than today,
with the obvious applications to diabetes mellitus and cardiovas-
cular diseases likely coming first. Diseases like multiple scle-
rosis, Huntington’s disease, and a barrage of other brain diseases
and neuropathies will likely follow at a fast pace.

Retinal imaging and image analysis have developed rapidly
over the past ten years, and image analysis is starting to play a
crucial role in the care of patients with retinal diseases, as well
as diseases that manifest in the retina. So far, image analysis
has mostly operated reactively, i.e., waiting for what the newest
image devices have as output and then trying to find approaches
to analyze and quantify the image data. We expect that imaging
device development and image analysis research will start to op-
erate more in concert and that this paradigm is ready for prime
time. We expect the image acquisition and subsequent image
analysis to become closely integrated, so that image analysis
successes and difficulties can directly influence device devel-
opers to focus on details that will help reliably analyze the im-
ages and vice versa.

Ultimately, the presented overview of the ophthalmic imaging
research and development in this field is driven by the overar-
ching goal of preventing blindness and visual loss. We expect
that this integrated development, in which a number of high-pro-
file groups participate worldwide, will recognize the somewhat
different needs of the developed as well as the developing world.
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